freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx長沙中考數(shù)學培優(yōu)(含解析)之平行四邊形-資料下載頁

2025-03-30 22:32本頁面
  

【正文】 經(jīng)過A,B,C三點的拋物線的解析式;(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標,并求AC、BE的交點F的坐標(3)若拋物線的頂點為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.【答案】(1)y=x2+x﹣;(2)F點坐標為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見解析【解析】【分析】將A、C點的坐標代入拋物線的解析式中,通過聯(lián)立方程組求得該拋物線的解析式;根據(jù)(1)題所得的拋物線的解析式,可確定拋物線的對稱軸方程以及B、C點的坐標,由CE∥x軸,可知C、E關(guān)于對稱軸對稱。根據(jù)A、C點求得直線AC的解析式,根據(jù)B、E點求出直線BE的解析式,聯(lián)立方程求得的解,即為F點的坐標;由E、C、F、D的坐標可知DF和EC互相垂直平分,則可判定四邊形CDEF為菱形.【詳解】(1)∵拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,∴,解得,∴拋物線解析式為y=x2+x﹣;(2)∵y=x2+x﹣,∴拋物線對稱軸為直線x=﹣1,∵CE∥x軸,∴C、E關(guān)于對稱軸對稱,∵C(0,﹣),∴E(﹣2,﹣),∵A、B關(guān)于對稱軸對稱,∴B(1,0),設(shè)直線AC、BE解析式分別為y=kx+b,y=k′x+b′,則由題意可得,解得,∴直線AC、BE解析式分別為y=﹣x﹣,y=x﹣,聯(lián)立兩直線解析式可得,解得,∴F點坐標為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明:∵y=x2+x﹣=(x+1)2﹣2,∴D(﹣1,﹣2),∵F(﹣1,﹣1),∴DF⊥x軸,且CE∥x軸,∴DF⊥CE,∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),∴DF和CE互相平分,∴四邊形CDEF是菱形.【點睛】本題考查菱形的判定方法,二次函數(shù)的性質(zhì),以及二次函數(shù)與二元一次方程組.14.如圖1,矩形ABCD中,AB=8,AD=6;點E是對角線BD上一動點,連接CE,作EF⊥CE交AB邊于點F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點H.(1)①如圖2,當點F與點B重合時,CE=  ,CG= ??;②如圖3,當點E是BD中點時,CE=  ,CG= ??; (2)在圖1,連接BG,當矩形CEFG隨著點E的運動而變化時,猜想△EBG的形狀?并加以證明; (3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由; (4)在圖1,設(shè)DE的長為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.【答案】(1), ,5, ;(2)△EBG是直角三角形,理由詳見解析;(3) ;(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質(zhì)求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個三角形一邊上的中線等于這條邊的一半,則這個三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質(zhì)構(gòu)建函數(shù)關(guān)系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結(jié)論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90176。,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(x)2+)2,S矩形ABCD=48,∴S矩形CEFG= [(x)2+()2].∴矩形CEFG的面積S=x2x+48(0≤x≤).【點睛】本題考查相似三角形綜合題、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)、相似多邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構(gòu)造相似三角形或直角三角形解決問題,屬于中考壓軸題.15.已知,以為邊在外作等腰,其中.(1)如圖①,若,求的度數(shù).(2)如圖②,,.①若,的長為______.②若改變的大小,但,的面積是否變化?若不變,求出其值;若變化,說明變化的規(guī)律.【答案】(1)120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對應(yīng)角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176。,EC=BD=6,因為BC=4,在Rt△BCE中,由勾股定理求BE即可;②過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK,仿照(2)利用旋轉(zhuǎn)法證明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出結(jié)論.試題解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60176。,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。,故答案為120176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176。,∠ABC=30176。,∴∠EBC=90176。.在RT△EBC中,EC=6,BC=4,∴EB===2∴AB=BE=2.②若改變α,β的大小,但α+β=90176。,△ABC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過點B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點K,連接AK.∵AH⊥BC于H,∴∠AHC=90176。.∵BE∥AH,∴∠EBC=90176。.∵∠EBC=90176。,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K為BE的中點,BE=2AH,∴BK=AH.∵BK∥AH,∴四邊形AKBH為平行四邊形.又∵∠EBC=90176。,∴四邊形AKBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∴AK是BE的垂直平分線.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC與△BAD中∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE==2,∴AH=BE=,∴S△ABC=BC?AH=2考點:全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1