【總結】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結論都不對解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【總結】定積分與微積分基本定理復習講義[備考方向要明了]考什么怎么考,了解定積分的基本思想,了解定積分的概念......[歸納·知識整合]1.定積分(1)定積分的相關概念:在f(x)dx中,a,b分別叫做積分下限與積分上限,區(qū)間[a,b]叫做積分區(qū)間,f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式.(2)定積分的幾何意義
2025-04-17 12:19
【總結】第二章第六節(jié)指數(shù)函數(shù) 題組一 指數(shù)冪的化簡與求值 1.()+的值為( ) B.C.D. 解析:()+ =[()3]- =-=0. 答案:A : (1...
2025-03-09 22:26
【總結】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結】 第二章第七節(jié)對數(shù)函數(shù) 題組一 對數(shù)的化簡與求值 f(x)=logax(a>0且a≠1),若f(x1x2…x2010)=8,則f()+f()+…+f(x)=( ) a8 ...
【總結】返回后頁前頁返回后頁前頁§5微積分學基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎上又可導出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【總結】第二章第五節(jié)函數(shù)的圖象 題組一 作 圖 y=3×()x的圖象,可以把函數(shù)y=()x的圖象( ) 解析:∵y=3×()x=()x-1, ∴y=3×()x的圖象可以把函...
【總結】微積分學基本定理與定積分的計算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測捷蛘錙張入痖儲琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2025-10-10 18:07
【總結】第二章第四節(jié)函數(shù)的奇偶性 題組一 函數(shù)的奇偶性的判定 y=f(x)是定義在R上的奇函數(shù),則下列函數(shù)中為奇函數(shù)的是( ) ①y=f(|x|);②y=f(-x);③y=xf(x);④...
【總結】第二講微積分基本公式?內容提要1.變上限的定積分;-萊布尼茲公式。?教學要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結】第15講│定積分與微積分基本定理第15講定積分與微積分基本定理知識梳理第15講│知識梳理1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b]等分成
2025-11-02 06:00
【總結】第二章第二節(jié)函數(shù)的定義域和值域 題組一 函數(shù)的定義域問題 1.(文)(2009·江西高考)函數(shù)y=的定義域為( ) A.[-4,1]B.[-4,0)C.(0,1]D.[-4,0)...
【總結】1.(2011·寧夏銀川一中月考)求曲線y=x2與y=x所圍成圖形的面積,其中正確的是( )A.S=(x2-x)dx B.S=(x-x2)dxC.S=(y2-y)dy D.S=(y-)dy[答案] B[分析] 根據(jù)定積分的幾何意義,確定積分上、下限和被積函數(shù).[解析] 兩函數(shù)圖象的交點坐標是(0,0),(1,1),故積分上限是1,下限是0,
2025-06-24 18:39
【總結】定積分與微積分基本定理習題一、選擇題1.a(chǎn)=xdx,b=exdx,c=sinxdx,則a、b、c的大小關系是( )A.a(chǎn)cb B.a(chǎn)bcC.cba D.cab2.由曲線y=x2,y=x3圍成的封閉圖形面積為( )練習、設點P在曲線y=x2上從原點到A(2,4)移動,
2025-04-17 13:04
【總結】微積分基本定理變速直線運動中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運動中位移為?21)(TTdttv設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),求物體在這段時間內所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-08-16 01:33