freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

復(fù)數(shù)的代數(shù)運(yùn)算教案-資料下載頁

2024-12-07 02:49本頁面
  

【正文】 )=(cxdy)+(dx+cy)i.∴(cxdy)+(dx+cy)i=a+??cx?dy?a,  ?dx?cy??bd?x?,22??c?d解這個(gè)方程組,得??y?bc?ad.?c2?d2?于是有:(a+bi)247。(c+di)=  ac?bdbc?ad??dc?da?bi的分母有理化得:  c?di②利用(c+di)(cdi)=c2+=a?bi(a?bi)(c?di)[ac?bi?(?di)]?(bc?ad)i??c?di(c?di)(c?di)c2?d2?(ac?bd)?(bc?ad)iac?bdbc?ad?2??d2c?d2c2?d2∴(a+bi)247。(c+di)=ac?bdbc?ad??d2c2?d2點(diǎn)評(píng):①是常規(guī)方法,②是利用初中我們學(xué)習(xí)的化簡無理分式時(shí),都是采用的分母有理化思想方法,而復(fù)數(shù)c+di與復(fù)數(shù)cdi,相當(dāng)于我們初中學(xué)習(xí)的  3?2的對(duì)偶式3?2,它們之積為1是有理數(shù),而(c+di)(cdi)=c2+  例3計(jì)算(1?2i)?(3?4i)解:(1?2i)?(3?4i)?1?2i3?4i?(1?2i)(3?4i)3?8?6i?4i?5?10i12?????i22(3?4i)(3?4i)3?425553/5例4計(jì)算(1?4i)(1?i)?2?4i  3?4i解:(1?4i)(1?i)?2?4i1?4?3i?2?4i7?i(7?i)(3?4i)???223?4i3?4i3?43?4i?21?4?3i?28i25?25i??1?i.  2525例5已知z是虛數(shù),且z+  1z?1是實(shí)數(shù),求證:?1證明:設(shè)z=a+bi(a、b∈R且b≠0),于是z+11a?biab?a??(b?)i.=a+bi+=a+bi+222222za?ba?ba?ba?bi1b∈R,∴b2=?b∵z+∵b≠0,∴a2+b2=1.∴z?1(a?1)?bi[(a?1)?bi][(a?1)?bi]??22z?1(a?1)?bi(a?1)?ba2?1?b2?[(a?1)b?(a?1)b]i0?2bib????b?2a?11?2a?1a?1∵b≠0,a、b∈R,∴鞏固練習(xí):  =3+i,則  bi是純虛數(shù)a?  +i  2.  31i?  1010D.  31?i1010a?bia?bi?的值是b?aib?      =2i,z2=1+3i,  iz2?的虛部為z15    ??(x∈R,y∈R),則x=___________,y=?i2?i1?i4/5答案:  4.  39,  55課后作業(yè):課本第112頁    A組4,5,6  B組1,2教學(xué)反思:  復(fù)數(shù)的乘法法則是:(a+bi)(c+di)=(acbd)+(bc+ad),可按多項(xiàng)式類似的辦法進(jìn)行,:  a?biac?bdbc?ad??i(c+di≠0).  c?dic2?d2c2?d2兩個(gè)復(fù)數(shù)相除較簡捷的方法是把它們的商寫成分式的形式,然后把分子與分母都乘以分母的共軛復(fù)數(shù),再把結(jié)果化簡  復(fù)數(shù)的代數(shù)運(yùn)算教案5  教學(xué)要求:掌握復(fù)數(shù)的代數(shù)形式的乘、除運(yùn)算。教學(xué)重點(diǎn):復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算及共軛復(fù)數(shù)的概念教學(xué)難點(diǎn):乘除運(yùn)算教學(xué)過程:  一、復(fù)習(xí)準(zhǔn)備:  ?(1)(1?4i)+(7?2i)  (2)(5?2i)+(?1?4i)?(2?3i)(3)(3?2i)[(?4?3i)?(5?i)]  :(1)(1?3)?(2?3)  (2)(a?b)?(c?d)(類比多項(xiàng)式的乘法引入復(fù)數(shù)的乘法)  二、講授新課:   ?、?復(fù)數(shù)的乘法法則:(a?bi)(c?di)?ac?bci?adi?bdi2?(ac?bd)?(ad?bc)i。(1)(1?4i)?(7?2i)  (2)(7?2i)?(1?4i)(3)[(3?2i)?(?4?3i)]?(5?i)(4)(3?2i)?[(?4?3i)?(5?i)]  探究:觀察上述計(jì)算,試驗(yàn)證復(fù)數(shù)的乘法運(yùn)算是否滿足交換、結(jié)合、分配律?例2.  計(jì)算(1)(1?4i)?(1?4i)  (2)(1?4i)?(7?2i)?(1?4i)(3)(3?2i)2  已知復(fù)數(shù)Z,若,試求Z的值。變:若(2?3i)Z?8,試求Z的值。②共軛復(fù)數(shù):兩復(fù)數(shù)a?bi與a?bi叫做互為共軛復(fù)數(shù),當(dāng)b?0時(shí),它們叫做共軛虛數(shù)。注:兩復(fù)數(shù)互為共軛復(fù)數(shù),則它們的乘積為實(shí)數(shù)?! ≌n堂練習(xí):說出下列復(fù)數(shù)的共軛復(fù)數(shù)3?2i,?4?3i,5?i,?5?2i,7,2i?! 、垲惐??2?23?(1?(2?2)(2?3)(2?3)3),試寫出復(fù)數(shù)的除法法則。  a?bic?di(a?bi)(c?di)(c?di)(c?di)ac?bdc?:(a?bi)?(c?di)?其中c?di叫做實(shí)數(shù)化因子  ???bc?adc?d22i  (3?2i)?(2?3i),(1?2i)?(?3?2i)(師生共同板演一道,再學(xué)生練習(xí))練習(xí):計(jì)算3?2i(1?2i)2,3?i(1?i)?12  :兩復(fù)數(shù)的乘除法,共軛復(fù)數(shù),共軛虛數(shù)?! ∪㈧柟叹毩?xí):(1)??1?i??2?i?i3  (2)i?i2?i3?i4?i5(3)2?i1??a?2i,z2?3?4i,且求a?! ?
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1