【總結】一、教學目標:1、知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學與生活的和諧之美
2024-12-03 11:29
【總結】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀
2024-11-19 19:35
【總結】超幾何分布多做練習開門見山介紹兩點分布作業(yè):自學《隨堂通》6871PP至離散型隨機變量的分布列(三)今天,這節(jié)課我們來認識兩個特殊的分布列.首先,看一個簡單的分布列─兩點分布列:如果隨機變量?的分布列為:這樣的分布列稱為兩點分布列,稱隨機變量?服從兩點分布
2024-11-17 12:01
【總結】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2024-11-18 15:23
【總結】離散型隨機變量的分布列一、基本知識概要::隨機試驗的結果可以用一個變量來表示,這樣的變量的隨機變量,記作;??,說明:若是隨機變量,,其中是常數(shù),則也是隨機變量。?ba????ba,?一、基本知識概要:2.離散型隨機變量:隨機變量可能取的值,可以按一
2024-11-18 15:24
【總結】一、教學目標:1、知識與技能:會求出某些簡單的離散型隨機變量的概率分布。2、過程與方法:認識概率分布對于刻畫隨機現(xiàn)象的重要性。3、情感、態(tài)度與價值觀:認識概率分布對于刻畫隨機現(xiàn)象的重要性。二、教學重點:離散型隨機變量的分布列的概念。教學難點:求簡單的離散型隨機變量的分布列。三、教學方法:探析歸納,講練結合四
2024-11-19 10:27
【總結】2.1.1離散型隨機變量教學目標:知識目標:機變量的意義;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:
2024-11-20 03:14
【總結】2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義授課類型:新授課課時安排:
2025-06-07 23:39
【總結】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀:
2024-12-05 06:38
【總結】【與名師對話】2021-2021學年高中數(shù)學離散型隨機變量的均值課時作業(yè)新人教A版選修2-3一、選擇題1.已知隨機變量ξ的概率分布如下表所示:ξ012P715715115且η=2ξ+3,則E(η)等于()解析:E(ξ)=0×71
2024-11-28 00:07
【總結】離散型隨機變量的分布列一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復進行;(2)試驗的所有結果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗例(1)某人射擊一次,可
【總結】2.3離散型隨機變量的均值與方差2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量
2024-11-20 03:13
【總結】量的分布列(1)一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復進行;(2)試驗的所有結果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗一、復習引入:例(1)某人射擊一
2024-11-18 12:12
【總結】§離散型隨機變量的分布列導學案(理)一、教學目標1、理解離散型隨機變量的分布列的意義,會求某些簡單的離散型隨機變量的分布列;2、掌握離散型隨機變量的分布列的兩個基本性質,并會用它來解決一些簡單的問題.3.理解二點分布及超幾何分布的意義.重點:離散型隨機變量的分布列的意義及基本性質.難點:分布列的求法和性質的應用.
【總結】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34