【總結】課題:(1)學習目標:1、經(jīng)歷探究抽象一元二次方程的概念的過程,進一步體會方程是刻畫現(xiàn)實世界的一個有效數(shù)學模型.2、了解一元二次方程的概念.3、知道一元二次方程的一般形式,會把一元二次方程化成一般形式,會辨認一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項.學習重點:一元二次方程的概念,包括它的一般形式.學習難點:例題中包含
2024-12-09 06:26
【總結】第一頁,編輯于星期六:七點四十九分。,第二頁,編輯于星期六:七點四十九分。,第三頁,編輯于星期六:七點四十九分。,第四頁,編輯于星期六:七點四十九分。,第五頁,編輯于星期六:七點四十九分。,第六頁,編...
2024-10-22 03:54
【總結】第二章第四課時:一元二次方程根的判別式?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦ax2+bx+c=0(a≠0)根的情況:(1)當Δ>0時,方程有兩個不相等的實數(shù)根;(2)當Δ=0時,方程有兩個相等的實數(shù)根;(3)當Δ<0時,方程無實數(shù)根.,也可以
2024-11-12 03:31
【總結】2、在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型(一元二次方程)的過程中使學生感受方程是刻畫現(xiàn)實世界數(shù)量關系的工具,增加對一元二次方程的感性認識。3、會用試驗的方法估計一元二次方程的解。1、知道一元二次方程的定義,能熟練地把一元二次方程整理成一般形式ax2+bx+c=o(a≠0)
2024-12-08 01:58
【總結】-----直接開平方法教學目標1.理解直接開平方法與平方根運算的聯(lián)系,學會用直接開平方法解特殊的一元二次方程;培養(yǎng)基本的運算能力(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接開平方法解.培養(yǎng)觀察、比較、分析、綜合等能力,會應用學過的知識去解決新的問題;3.鼓勵學生積極主動的參與“教”與“學
2024-12-08 22:09
【總結】第1頁共3頁九年級數(shù)學一元二次方程根的判別式及根與系數(shù)關系探究(一元二次方程)基礎練習試卷簡介:全卷共4個選擇題,9個填空題,1個證明題,6個解答題,分值120,測試時間60分鐘。本套試卷在課本的基礎上,對題目稍做一定難度的拔高,主要考察了學生對元二次方程根的判別式及根與系數(shù)的關系的靈活運用。各個題目難度類似
2024-08-11 17:40
【總結】直接開平方法、配方法、公式法、因式分解法.(80-2x)(60-2x)=1500解(1)先把方程化為一元二次方程的一般形式x2-70x+825=0.(2)確認a,b,c的值a=1,b=-70,c=825(3)判斷b2-4ac的值
2024-12-08 10:19
【總結】﹡課時10一元二次方程根的判別式及根與系數(shù)的關系【課前熱身】1.(07巴中)一元二次方程的根的情況為( )A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根2.若方程kx2-6x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是.3.設x1、x2是方程3x2+4x-5=0的兩根,則,.x1
2024-08-30 13:48
【總結】課題:一元二次方程的根的判別式平方根的性質打開你的搜索引擎,搜尋:用公式法求下列方程的根:.01)3;0141)2;022)1222?????????xxxxxx用公式法解一元二次方程的一般步驟:1)把方程化為一般形式2)確定的值cba,
2024-11-12 16:21
2024-11-09 21:33
【總結】一元二次方程的根的判別式??????2221532022542032310xxyyxx????????利用公式法解下列方程對于一元二次方程你能談論一下它的根的情況嗎?在什么情況下,一元二次方程有解?有什么樣的解?什么情況下一元二次方程無解?2
2024-11-11 07:48
【總結】華師版·九年級數(shù)學·上冊也就是說,只有當一元二次方程ax2+bx+c=0(a≠0)的系數(shù)a、b、c滿足條件b2-4ac≥0時才有實數(shù)根.因此,我們可以根據(jù)一元二次方程的系數(shù)直接判定根的情況.
2025-06-16 12:18
【總結】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階
2025-06-14 12:03
2025-06-16 23:33
【總結】-----直接開平方法教學目的:掌握解一元二次方程的直接開平方法重點、難點:直接開平方法解一元二次方程教學過程:一、探索:請你和同學一起來探討如何解下列方程:(1)x2=4;(2)x2-1=0;歸納什么是直接開平方法;二、新課:例1解下列方程:
2024-11-20 02:37