freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)奧數(shù)教案——抽屜原理(解析版)(編輯修改稿)

2024-11-04 04:38 本頁面
 

【文章內(nèi)容簡介】 必有兩個整數(shù),:注意到這些數(shù)隊(duì)以10的余數(shù)即個位數(shù)字,以0,1,…,9為標(biāo)準(zhǔn)制造10個抽屜,標(biāo)以[0],[1],…,[9].若有兩數(shù)落入同一抽屜,其差是10的倍數(shù),只是僅有7個自然數(shù),似不便運(yùn)用抽屜原則,再作調(diào)整:[6],[7],[8],[9]四個抽屜分別與[4],[3],[2],[1]合并,則可保證至少有一個抽屜里有兩個數(shù),它們的和或差是10的倍數(shù).(二)面積問題例:九條直線中的每一條直線都將正方形分成面積比為2:3的梯形,證明::如圖,設(shè)直線EF將正方形分成兩個梯形,作中位線MN。由于這兩個梯形的高相等,故它們的面積之比等于中位線長的比,即|MH|:|NH|。于是點(diǎn)H有確定的位置(它在正方形一對對邊中點(diǎn)的連線上,且|MH|:|NH|=2:3).由幾何上的對稱性,這種點(diǎn)共有四個(即圖中的H、J、I、K).已知的九條適合條件的分割直線中的每一條必須經(jīng)過H、J、I、J、I、K看成四個抽屜,九條直線當(dāng)成9個物體,即可得出必定有3條分割線經(jīng)過同一點(diǎn).(三)染色問題例1正方體各面上涂上紅色或藍(lán)色的油漆(每面只涂一種色),:把兩種顏色當(dāng)作兩個抽屜,把正方體六個面當(dāng)作物體,那么6=22+2,根據(jù)原理二, 有5個小朋友,這5個人中至少有兩個小朋友摸出的棋子的顏色的配組是一樣的。分析與解答 首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,至少有兩個小朋友摸出的棋子的顏色在同一個抽屜里,也就是他們所拿棋子的顏色配組是一樣的。例3:假設(shè)在一個平面上有任意六個點(diǎn),無三點(diǎn)共線,每兩點(diǎn)用紅色或藍(lán)色的線段連起來,都連好后,問你能不能找到一個由這些線構(gòu)成的三角形,使三角形的三邊同色?解:首先可以從這六個點(diǎn)中任意選擇一點(diǎn),然后把這一點(diǎn)到其他五點(diǎn)間連五條線段,如圖,在這五條線段中,至少有三條線段是同一種顏色,假定是紅色,現(xiàn)在我們再單獨(dú)來研究這三條紅色的線。這三條線段的另一端或許是不同顏色,假設(shè)這三條線段(虛線)中其中一條是紅色的,那么這條紅色的線段和其他兩條紅色的線段便組成了我們所需要的同色三角形,如果這三條線段都是藍(lán)色的,那么這三條線段也組成我們所需要的同色三角形。因而無論怎樣著色,在這六點(diǎn)之間的所有線段中至少能找到一個同色三角形。例3′(六人集會問題)證明在任意6個人的集會上,或者有3個人以前彼此相識,或者有三個人以前彼此不相識?!崩?”:17個科學(xué)家中每個人與其余16個人通信,他們通信所討論的僅有三個問題,而任兩個科學(xué)家之間通信討論的是同一個問題。證明:至少有三個科學(xué)家通信時討論的是同一個問題。解:不妨設(shè)A是某科學(xué)家,他與其余16位討論僅三個問題,由鴿籠原理知,他至少與其中的6位討論同一問題。設(shè)這6位科學(xué)家為B,C,D,E,F(xiàn),G,討論的是甲問題。若這6位中有兩位之間也討論甲問題,則結(jié)論成立。否則他們6位只討論乙、丙兩問題。這樣又由鴿籠原理知B至少與另三位討論同一問題,不妨設(shè)這三位是C,D,E,且討論的是乙問題。若C,D,E中有兩人也討論乙問題,則結(jié)論也就成立了。否則,他們間只討論丙問題,這樣結(jié)論也成立。三.制造抽屜是運(yùn)用原則的一大關(guān)鍵例1 從…、30這15個偶數(shù)中,任取9個數(shù),證明其中一定有兩個數(shù)之和是34。分析與解答 我們用題目中的15個偶數(shù)制造8個抽屜:凡是抽屜中有兩個數(shù)的,都具有一個共同的特點(diǎn):這兩個數(shù)的和是34。現(xiàn)從題目中的15個偶數(shù)中任取9個數(shù),由抽屜原理(因?yàn)槌閷现挥?個),這兩個數(shù)的和是34。例2:從…、120這20個自然數(shù)中,至少任選幾個數(shù),就可以保證其中一定包括兩個數(shù),它們的差是12。分析與解答在這20個自然數(shù)中,差是12的有以下8對:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。另外還有4個不能配對的數(shù){9},{10},{11},{12},共制成12個抽屜(每個括號看成一個抽屜).只要有兩個數(shù)取自同一個抽屜,那么它們的差就等于12,根據(jù)抽屜原理至少任選13個數(shù),即可辦到(取12個數(shù):從12個抽屜中各取一個數(shù)(例如取1,2,3,…,12),那么這12個數(shù)中任意兩個數(shù)的差必不等于12)。例3: 從1到20這20個數(shù)中,任取11個數(shù),必有兩個數(shù),其中一個數(shù)是另一個數(shù)的倍數(shù)。分析與解答 根據(jù)題目所要求證的問題,應(yīng)考慮按照同一抽屜中,看成10個抽屜(顯然,它們具有上述性質(zhì)):{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。從這10個數(shù)組的20個數(shù)中任取11個數(shù),根據(jù)抽屜原理,所以這兩個數(shù)中,其中一個數(shù)一定是另一個數(shù)的倍數(shù)。例4:某校校慶,來了n位校友,在這n個校友中至少有兩人握手的次數(shù)一樣多。分析與解答 共有n位校友,每個人握手的次數(shù)最少是0次,即這個人與其他校友都沒有握過手;最多有n1次,如果有一個校友握手的次數(shù)是0次,那么握手次數(shù)最多的不能多于n2次;如果有一個校友握手的次數(shù)是n1次,、…、n2,還是后一種狀態(tài)…、n1,到會的n個校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個人屬于同一抽屜,則這兩個人握手的次數(shù)一樣多。在有些問題中,“抽屜”和“物體”不是很明顯的,需要精心制造“抽屜”和“物體”.如何制造“抽屜”和“物體”可能是很困難的,一方面需要認(rèn)真地分析題目中的條件和問題,另一方面需要多做一些題積累經(jīng)驗(yàn)。抽屜原理把八個蘋果任意地放進(jìn)七個抽屜里,不論怎樣放,至少有一個抽屜放有兩個或兩個以上的蘋果。抽屜原則有時也被稱為鴿巢原理,它是德國數(shù)學(xué)家狄利克雷首先明確的提出來并用以證明一些數(shù)論中的問題,因此,也稱為狄利克雷原則。它是組合數(shù)學(xué)中一個重要的原理。把它推廣到一般情形有以下幾種表現(xiàn)形式。形式一:證明:設(shè)把n+1個元素分為n個集合A1,A2,…,An,用a1,a2,…,an表示這n個集合里相應(yīng)的元素個數(shù),需要證明至少存在某個ai大于或等于2(用反證法)假設(shè)結(jié)論不成立,即對每一個ai都有ai<2,則因?yàn)閍i是整數(shù),應(yīng)有ai≤1,于是有:a1+a2+…+an≤1+1+…+1=n<n+1這與題設(shè)矛盾。所以,至少有一個ai≥2,即必有一個集合中含有兩個或兩個以上的元素。形式二:設(shè)把n?m+1個元素分為n個集合A1,A2,…,An,用a1,a2,…,an表示這n個集合里相應(yīng)的元素個數(shù),需要證明至少存在某個ai大于或等于m+1。用反證法)假設(shè)結(jié)論不成立,即對每一個ai都有ai<m+1,則因?yàn)閍i是整數(shù),應(yīng)有ai≤m,于是有:a1+a2+…+an≤m+m+…+m=n?m<n?m+1n個m 這與題設(shè)相矛盾。所以,至少有存在一個ai≥m+1高斯函數(shù):對任意的實(shí)數(shù)x,[x]表示“不大于x的最大整數(shù)”.例如:[]=3,[]=2,[-]=-3,[7]=7,……一般地,我們有:[x]≤x<[x]+1形式三:證明:設(shè)把n個元素分為k個集合A1,A2,…,Ak,用a1,a2,…,ak表示這k個集合里相應(yīng)的元素個數(shù),需要證明至少存在某個ai大于或等于[n/k]。(用反證法)假設(shè)結(jié)論不成立,即對每一個ai都有ai<[n/k],于是有:a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=nk個[n/k] ∴ a1+a2+…+ak<n 這與題設(shè)相矛盾。所以,必有一個集合中元素個數(shù)大于或等于[n/k]形式四:證明:設(shè)把q1+q2+…+qn-n+1個元素分為n個集合A1,A2,…,An,用a1,a2,…,an表示這n個集合里相應(yīng)的元素個數(shù),需要證明至少存在某個i,使得ai大于或等于qi。(用反證法)假設(shè)結(jié)論不成立,即對每一個ai都有ai<qi,因?yàn)閍i為整數(shù),應(yīng)有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1這與題設(shè)矛盾。所以,假設(shè)不成立,故必有一個i,在第i個集合中元素個數(shù)ai≥qi形式五:證明:(用反證法)將無窮多個元素分為有限個集合,假設(shè)這有限個集合中的元素的個數(shù)都是有限個,則有限個有限數(shù)相加,所得的數(shù)必是有限數(shù),這就與題設(shè)產(chǎn)生矛盾,所以,假設(shè)不成立,故必有一個集合含有無窮多個元素。例題1::生日從1月1日排到12月31日,共有366個不相同的生日,我們把366個不同的生日看作366個抽屜,400人視為400個蘋果,由表現(xiàn)形式1可知,至少有兩人在同一個抽屜里,:將一年中的366天視為366個抽屜,400個人看作400個蘋果,由抽屜原理的表現(xiàn)形式1可以得知::任取5個整數(shù),必然能夠從中選出三個,:任意給一個整數(shù),它被3除,余數(shù)可能為0,1,2,我們把被3除余數(shù)為0,1,2的整數(shù)各歸入類r0,r1,:1176。.某一類至少包含三個數(shù);2176。.某兩類各含兩個數(shù),就在至少包含三個數(shù)的那一類中任取三數(shù),其和一定能被3整除;若是第二種情況,在三類中各取一個數(shù),其和也能被3整除..綜上所述,:某校派出學(xué)生204人上山植樹15301株,其中最少一人植樹50株,最多一人植樹100株,:按植樹的多少,從50到100株可以構(gòu)造51個抽屜,則個問題就轉(zhuǎn)化為至少有5人植樹的株數(shù)在同一個抽屜里.(用反證法)假設(shè)無5人或5人以上植樹的株數(shù)在同一個抽屜里,那只有5人以下植樹的株數(shù)在同一個抽屜里,而參加植樹的人數(shù)為204人,所以,每個抽屜最多有4人,故植樹的總株數(shù)最多有:4(50+51+…+100)=4 =15300<,:1.邊長為1的等邊三角形內(nèi)有5個點(diǎn),.邊長為1的等邊三角形內(nèi),若有n2+1個點(diǎn),.求證:任意四個整數(shù)中,.某校高一某班有50名新生,.某個年級有202人參加考試,滿分為100分,且得分都為整數(shù),總得分為10101分,則至少有3人得分相同.“任意367個人中,必有生日相同的人?!薄皬娜我?雙手套中任取6只,其中至少有2只恰為一雙手套?!薄皬臄?shù)1,2,...,10中任取6個數(shù),其中至少有2個數(shù)為奇偶性不同?!?.....大家都會認(rèn)為上面所述結(jié)論是正確的。這些結(jié)論是依據(jù)什么原理得出的呢?這個原理叫做抽屜原理。它的內(nèi)容可以用形象的語言表述為:“把m個東西任意分放進(jìn)n個空抽屜里(mn),那么一定有一個抽屜中放進(jìn)了至少2個東西。”在上面的第一個結(jié)論中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。這相當(dāng)于把367個東西放入 366個抽屜,至少有2個東西在同一抽屜里。在第二個結(jié)論中,不妨想象將5雙手套分別編號,即號碼為1,2,...,5的手套各有兩只,同號的兩只是一雙。任取6只手套,它們的編號至多有5種,因此其中至少有兩只的號碼相同。這相當(dāng)于把6個東西放入5個抽屜,至少有2個東西在同一抽屜里。抽屜原理的一種更一般的表述為:“把多于kn個東西任意分放進(jìn)n個空抽屜(k是正整數(shù)),那么一定有一個抽屜中放進(jìn)了至少k+1個東西?!崩蒙鲜鲈砣菀鬃C明:“任意7個整數(shù)中,至少有3個數(shù)的兩兩之差是3的倍數(shù)?!币?yàn)槿我徽麛?shù)除以3時余數(shù)只有0、2三種可能,所以7個整數(shù)中至少有3個數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù)。如果問題所討論的對象有無限多個,抽屜原理還有另一種表述:“把無限多個東西任意分放進(jìn)n個空抽屜(n是自然數(shù)),那么一定有一個抽屜中放進(jìn)了無限多個東西。”抽屜原理的內(nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用。許多有關(guān)存在性的證明都可用它來解決。1958年6/7月號的《美國數(shù)學(xué)月刊》上有這樣一道題目:“證明在任意6個人的集會上,或者有3個人以前彼此相識,或者有三個人以前彼此不相識?!边@個問題可以用如下方法簡單明了地證出:在平面上用6個點(diǎn)A、B、C、D、E、F分別代表參加集會的任意6個人。如果兩人以前彼此認(rèn)識,那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線。考慮A點(diǎn)與其余各點(diǎn)間的5條連線AB,AC,...,AF,它們的顏色不超過2種。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。如果BC,BD,CD 3條連線中有一條(不妨設(shè)為BC)也為紅色,那么三角形ABC即一個紅色三角形,A、B、C代表的3個人以前彼此相識:如果BC、BD、CD 3條連線全為藍(lán)色,那么三角形BCD即一個藍(lán)色三角形,B、C、D代表的3個人以前彼此不相識。不論哪種情形發(fā)生,都符合問題的結(jié)論。六人集會問題是組合數(shù)學(xué)中著名的拉姆塞定理的一個最簡單的特例,這個簡單問題的證明思想可用來得出另外一些深入的結(jié)論。這些結(jié)論構(gòu)成了組合數(shù)學(xué)中的重要內(nèi)容拉姆塞理論。從六人集會問題的證明中,我們又一次看到了抽屜原理的應(yīng)用。解讀“抽屜原理”當(dāng)“抽屜原理”從少數(shù)精英學(xué)生學(xué)習(xí)的奧林匹克競賽課堂走向全體學(xué)生學(xué)習(xí)的大眾課堂的時候,無疑對教師和學(xué)生都構(gòu)成了前所未有的挑戰(zhàn)。為此,頗有必有對此展開學(xué)習(xí)和研討。一、抽屜原理簡介抽屜原理又稱鴿巢原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狹利克
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1