【總結(jié)】第一篇:中考數(shù)學(xué)幾何證明題 中考數(shù)學(xué)幾何證明題 在?ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.(1)在圖1中證明CE=CF; (2)若∠ABC=90°,G是EF的中點(diǎn)(如圖...
2024-10-15 02:41
【總結(jié)】第一篇:初一幾何證明題 初一《幾何》復(fù)習(xí)題2002--6—29姓名:一.填空題 1.過(guò)一點(diǎn) 2.過(guò)一點(diǎn),有且只有直線與這條直線平行; 3.兩條直線相交的,它們的交點(diǎn)叫做;4.直線外一點(diǎn)與直線上...
2024-10-24 21:17
【總結(jié)】第一篇:初中數(shù)學(xué)幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【總結(jié)】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點(diǎn)且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2024-10-29 02:17
【總結(jié)】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來(lái)就是因?yàn)闆](méi)有利用好隱藏...
2024-10-21 22:38
【總結(jié)】第一篇:初中數(shù)學(xué)幾何證明題 初中數(shù)學(xué)幾何證明題 分析已知、求證與圖形,探索證明的思路。 對(duì)于證明題,有三種思考方式: (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【總結(jié)】1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行
2025-08-05 03:51
【總結(jié)】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點(diǎn)E、F,EM平分∠AEG,F(xiàn)N平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
2025-03-24 12:38
【總結(jié)】8.如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ?。?A.20° B.25° C.30° D.35°考點(diǎn): 菱形的性質(zhì).分析: 依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
2025-03-24 12:34
【總結(jié)】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).【答案】解:(1)由折疊的性質(zhì)可得,GA=G
【總結(jié)】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【總結(jié)】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-25 03:14
【總結(jié)】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【總結(jié)】第一篇:怎樣做好幾何證明題 怎樣做好幾何證明題 推理能力是一個(gè)人應(yīng)具備的重要能力之一,數(shù)學(xué)教學(xué)要求學(xué)生學(xué)會(huì)推理論證,也學(xué)會(huì)合情推理。合情推理能力的培養(yǎng)是一個(gè)長(zhǎng)期過(guò)程,由于初中學(xué)生年齡小,空間想象能...
2024-10-22 05:54
【總結(jié)】第一篇:初一幾何證明題答案 初一幾何證明題答案 圖片發(fā)不上來(lái),看參考資料里的1如圖,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求證:AC=EF。 2已知AC平分角BAD,CE垂...
2024-11-16 05:06