freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學(xué)幾何(編輯修改稿)

2024-10-14 11:28 本頁面
 

【文章內(nèi)容簡(jiǎn)介】 ∠EBA=200,求∠BED的度數(shù).經(jīng)典難題(一)⊥AB,連接EO。由于GOFE四點(diǎn)共圓,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得證?!鱀GC使與△ADP全等,可得△PDG為等邊△,從而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300,從而得出△PBC是正三角形,,連接EB2并延長(zhǎng)交C2Q于H點(diǎn),連接FB2并延長(zhǎng)交A2Q于G點(diǎn),由A2E=A1B1=B1C1=FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,從而可得∠A2B2C2=900,同理可得其他邊垂直且相等,從而得出四邊形A2B2C2D2是正方形。,連接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,從而得出∠DEN=∠F。經(jīng)典難題(二)1.(1)延長(zhǎng)AD到F連BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)連接OB,OC,既得∠BOC=1200,從而可得∠BOM=600,所以可得OB=2OM=AH=AO,得證。⊥CD,OG⊥BE,連接OP,OA,OF,AF,OG,AG,OQ。由于,由此可得△ADF≌△ABG,從而可得∠AFC=∠AGE。又因?yàn)镻FOA與QGOA四點(diǎn)共圓,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,從而可得AP=AQ。,C,F點(diǎn)分別作AB所在直線的高EG,CI,F(xiàn)H??傻肞Q=。由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。從而可得PQ==,從而得證。經(jīng)典難題(三)△ADE,到△ABG,∠ABG=∠ADE=900+450=1350從而可得B,G,D在一條直線上,可得△AGB≌△CGB。推出AE=AG=AC=GC,可得△AGC為等邊三角形?!螦GB=300,既得∠EAC=300,從而可得∠AEC=750。又∠EFC=∠DFA=450+300=:CE=CF?!虳E,可得四邊形CGDH是正方形。由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,從而可知道∠F=150,從而得出AE=AF?!虲D,F(xiàn)E⊥BE,可以得出GFEC為正方形。令A(yù)B=Y,BP=X,CE=Z,可得PC=YX。tan∠BAP=tan∠EPF==,可得YZ=XYX2+XZ,即Z(YX)=X(YX),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得證。經(jīng)典難題(四)△ABP600,連接PQ,則△PBQ是正三角形??傻谩鱌QC是直角三角形。所以∠APB=1500。,并選一點(diǎn)E,使AE∥DC,BE∥∠ABP=∠ADP=∠AEP,可得:AEBP共圓(一邊所對(duì)兩角相等)。可得∠BAP=∠BEP=∠BCP,得證。,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:=,即AD?BC=BE?AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得=,即AB?CD=DE?AC,②由①+②可得:AB?CD+AD?BC=AC(BE+DE)=ACBD,得證?!虯E,AG⊥CF,由==,可得:=,由AE=FC。可得DQ=DG,可得∠DPA=∠DPC(角平分線逆定理)。第四篇:初中數(shù)學(xué)幾何怎么樣學(xué)初中數(shù)學(xué)幾何怎么樣學(xué)?怎樣學(xué)好初中數(shù)學(xué)怎樣學(xué)好數(shù)學(xué),是剛步入初中的同學(xué)面臨的共同問題。大家在小學(xué)學(xué)習(xí)數(shù)學(xué)時(shí),往往偏重于模仿,依賴性較強(qiáng),獨(dú)立思考和自學(xué)的能力不夠,很少去探究知識(shí)間的聯(lián)系和應(yīng)用。到了中學(xué),這種學(xué)習(xí)方法必須改變。那么如何學(xué)好數(shù)學(xué)呢?下面從“四多”談一談我的建議。一、多看主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個(gè)習(xí)慣,把課本當(dāng)成練習(xí)冊(cè);也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個(gè)層次:。預(yù)習(xí)課文時(shí),要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對(duì)定義、公理、公式、法則等,可以在紙上進(jìn)行簡(jiǎn)單的復(fù)述。重點(diǎn)知識(shí)可在課本上批、劃、圈、點(diǎn)。這樣做,不但有助于理解課文,還能幫助我們?cè)谡n堂上集中精力聽講,有重點(diǎn)地聽講。預(yù)習(xí)時(shí),我們只對(duì)所要學(xué)的教材內(nèi)容有了一個(gè)大概的了解,不一定都已深透理解和消化吸收,因此有必要對(duì)預(yù)習(xí)時(shí)所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點(diǎn)、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識(shí)系統(tǒng)化,加深和鞏固對(duì)課堂學(xué)習(xí)內(nèi)容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個(gè)單元后,應(yīng)全面閱讀課本,對(duì)本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識(shí)小結(jié),進(jìn)行查缺補(bǔ)漏。二、多想主要是指養(yǎng)成思考的習(xí)慣,學(xué)會(huì)思考的方法。獨(dú)立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力,同學(xué)們?cè)趯W(xué)習(xí)時(shí),要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識(shí),歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識(shí)。三、多做主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂?。做?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識(shí);其次是初步啟發(fā)靈活應(yīng)用知識(shí)和培養(yǎng)獨(dú)立思考的能力;第三是融會(huì)貫通,把不同內(nèi)容的數(shù)學(xué)知識(shí)溝通起來。在做習(xí)題時(shí),要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡(jiǎn)便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對(duì)知識(shí)的理解。四、多問是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個(gè)學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗(yàn)的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動(dòng)腦筋,不愿意動(dòng)腦筋,
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1