freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學設計合集(編輯修改稿)

2024-10-05 02:31 本頁面
 

【文章內(nèi)容簡介】 理師:借助于電腦與多媒體,利用《幾何畫板》軟件,演示正弦定理教學課件。邊演示邊引導學生觀察三角形形狀的變化與三個比值的變化情況。結(jié)論:asinA=bsinB=csinC對于任意三角形都成立?!驹O計意圖】通過《幾何畫板》軟件的演示,使學生對結(jié)論的認識從感性逐步上升到理性。師:利用上述結(jié)論解決情境問題中圖3的情形,并檢驗與生5的計算結(jié)果是否一致。生10:(通過計算)與生5的結(jié)果相同。師:如果上述結(jié)論成立,則在三角形中利用該結(jié)論解決“已知兩邊和其中一邊的對角,求另一邊的對角和第三邊?!钡膯栴}就簡單多了?!驹O計意圖】與情境設置中的問題相呼應,間接給出了正弦定理的簡單應用,并強化學生學習探究、應用正弦定理的心理需求。(2)點明課題:正弦定理(3)正弦定理的理論探究師:既然是定理,則需要證明,請同學們與小組共同探究正弦定理的證明。探究方案:直角三角形——已驗證; 銳角三角形——課堂探究; 鈍角三角形——課后證明。【設計意圖】通過分析,確定探究方案。課堂只讓學生探究銳角三角形的情形,有助于在不影響探究進程的同時,為探究銳角三角形的情形騰出更多的時間。鈍角三角形的情形以課后證明的形式,可使學生鞏固課堂的成果。師:請你(生11)到講臺上,講講你的證明思路?生11:(走上講臺),設法將問題轉(zhuǎn)化成直角三角形中的問題進行解決。通過作三角形的高,與生5的辦法一樣,如圖5作BC邊上的高AD,則AD=csinB=bsinC,所以bsinB=csinCAcabB,同理可得asinA=bsinBCD圖 5 銳角三角形師:因為要證明的是一個等式,所以應從銳角三角形的條件出發(fā),構(gòu)造等量關(guān)系從而達到證明的目的。注意: csinB=bsinC表示的幾何意義是三角形同一邊上的高不變。這是一個簡捷的證明方法!【設計意圖】點明此證法的實質(zhì)是找到一個可以作為證明基礎(chǔ)的等量關(guān)系,為后續(xù)兩種方法的提出做鋪墊,同時適時對學生作出合情的評價。師:在三角形中還有哪些可以作為證明基礎(chǔ)的等量關(guān)系呢? 學生七嘴八舌地說出一些等量關(guān)系,經(jīng)討論后確定如下一些與直角三角形有關(guān)的等量關(guān)系可能有利用價值:①三角形的面積不變;②三角形外接圓直徑不變。在教師的建議下,學生分別利用這兩種關(guān)系作為基礎(chǔ)又得出了如下兩種證法:證法二:如圖6,設AD、BE、CF分別是DABC的三條高。則有AD=bsin208。ACB,BE=csin208。BACCF=asin208。ABCAFcaD圖 6 EbCB。bcsin208。BAC=c12casin208。ABC12\SDABC=\a12absin208。ACB==bsin208。ABC=Asin208。BACsin208。ACBcBa證法三:如圖7,設BD=2r是DABC外接圓的直徑,則208。BAD=90176。,208。ACB=208。ADB=BD=2rsin208。ADBab==2r同理可證:sin208。BACsin208。ABC\sin208。ACB=\asin208。BAC=bsin208。ABC=csin208。ACBccbDC圖 7 三角形外接圓【設計意圖】在證明正弦定理的同時,將兩邊及其夾角的三角形面積公式 及asinA=bsinB=csinC=2r一并牽出,使知識的產(chǎn)生自然合理。uuuruuur、BC、CA間有什么關(guān)系? 師:前面我們學習了平面向量,能否運用向量的方法證明呢?uuur師:任意DABC中,三個向量ABuuuruuuruuurr生12:AB+BC+CA=0uuuruuuruuurr師:正弦定理體現(xiàn)的是三角形中邊角間的數(shù)量關(guān)系,由AB+BC+CA=0轉(zhuǎn)化成數(shù)量關(guān)系?uuuruuuruuurruuuruuuruuurr師:在AB+BC+CA兩邊同乘以向量j,有(AB+BC+CA)j=0,這里的向量rrj可否任意?又如何選擇向量j?r生14:因為兩個垂直向量的數(shù)量積為0,可考慮讓向量j與三個向量中的一uuur個向量(如向量BC)垂直,而且使三個項的關(guān)系式轉(zhuǎn)化成兩個項的關(guān)系式。生13:利用向量的數(shù)量積運算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。師:還是先研究銳角三角形的情形,按以上思路,請大家具體試一下,看還有什么問題?教師參與學生的小組研究,同時引導學生注意兩個向量的夾角,最后讓學生通過小組代表作完成了如下證明。uuurr證法四:如圖8,設非零向量j與向量BC垂直。uuuruuuruuurr因為AB+BC+CA=0,uuuruuuruuurr所以(AB+BC+CA)j=0 uuurruuurr即ABj+CAj=0 Buuurruuurruuurruuurr|AB||j|cosAB,j+|CA||j|cosCA,j=0 rrc|j|cos(90176。+B)+b|j|cos(90176。C)=0 rrc|j|(sinB)+b|j|sinC=0AcrjbaC圖 8 向量所以bsinB=csinC,同理可得asinA=bsinB師:能否簡化證法四的過程?(留有一定的時間給學生思考)uuurruuurr師:ABj+CAj=0有什么幾何意義?uuurruuurruuurruuurr生15:把ABj+CAj=0移項可得CAj=BAjuuurruuur義可知CA與BA在j方向上的投影相等。,由向量數(shù)量積的幾何意生16:我還有一種證法uuuruuur證法五:如圖9,作AD^BC,則AB與AC在uuuruuuruuuruuuruuurAD方向上的投影相等,即ABAD=ACADuuuruuuruuuruuur\|AB||AD|cos(90176。B)=|AC||AD|cos(90176。C)C\csinB=bsin 師:請你到講臺來給大家講一講。(學生16上臺板書自己的證明方法。)AcBDabC圖 9 向量故bsinB=csinC,同理可得asinA=bsinB師:利用向量在邊上的高上的射影相等,證明了正弦定理,方法非常簡捷明了!【設計意圖】利用向量法來證明幾何問題,學生相對比較生疏,不容易馬上想出來,教師通過設計一些遞進式的問題給予適當?shù)膯l(fā)引導,將很難想到的方法合理分解,有利于學生理解接受。(四)小結(jié)師:本節(jié)課我們是從實際問題出發(fā),通過猜想、實驗,歸納等思維方法,最后發(fā)現(xiàn)了正弦定理,并從不同的角度證明了它。本節(jié)課,我們研究問題的突出特點是從特殊到一般,利用了幾何畫板進行數(shù)學實驗。我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。(五)作業(yè)回顧本節(jié)課的整個研究過程,體會知識的發(fā)生過程;思考:證法五與證法一有何聯(lián)系?思考:能否借助向量的坐標的方法證明正弦定理?當三角形為鈍角三角形時,證明正弦定理?!驹O計意圖】為保證學生有充足的時間來完成觀察、歸納、猜想、探究和證明,小結(jié)的時間花得少且比較簡單,這將在下一節(jié)課進行完善,因此作業(yè)的布置也為下節(jié)課做一些必要的準備。七、教學反思為了使學生真正成為提出問題和解決問題的主體,成為知識的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學過程成為學生主動獲取知識、發(fā)展能力、體驗數(shù)學的過程。我想到了“情境——問題”教學模式,即構(gòu)建一個以情境為基礎(chǔ),提出問題與解決問題相互引發(fā)攜手并進的“情境——問題”學習鏈,并根據(jù)上述精神,結(jié)合教學內(nèi)容,具體做出了如下設計:①創(chuàng)設一個現(xiàn)實問題情境作為提出問題的背景(注:該情境源于《普通高中課程標準數(shù)學教科書數(shù)學(必修4)》(人教版) B組第二題,我將其加工成一個具有實際意義的決策型問題);②啟發(fā)、引導學生提出自己關(guān)心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學問題,解決過渡性問題4與5時需要使用正弦定理,借此引發(fā)學生的認知沖突,揭示解斜三角形的必要性,并使學生產(chǎn)生進一步探索解決問題的動機。然后引導學生抓住問題的數(shù)學實質(zhì),將過渡性問題引伸成一般的數(shù)學問題:已知三角形的兩條邊和一邊的對角,求另一邊的對角及第三邊。解決這兩個問題需要先回答目標問題:在三角形中,兩邊與它們的對角之間有怎樣的關(guān)系?③為了解決提出的目標問題,引導學生回到他們所熟悉的直角三角形中,得出目標問題在直角三角形中的解,從而形成猜想,然后使用幾何畫板對猜想進行驗證,進而引導學生對猜想進行嚴格的邏輯證明??傊?,整個過程讓學生通過自主探索、合作交流,親身經(jīng)歷了“情境思考”——“提出問題”——“研究特例”——“歸納猜想”——“
點擊復制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1