【總結(jié)】一、不等關(guān)系是普遍存在的問題1.限速10km/h的路標(biāo),指示司機前方路段行駛時,應(yīng)使汽車的速度v不超過10km/.問題2:設(shè)點A與平面的距離為d,B為平面上的任意一點,則可得到不等式.d≤|AB|V≤10必修5第74頁a
2024-11-18 08:48
【總結(jié)】復(fù)習(xí)課不等式課時目標(biāo),并能解有關(guān)的實際應(yīng)用問題.單的線性規(guī)劃問題的解法..不等式—錯誤!一、選擇題1.設(shè)ab0,則下列不等式中一定成立的是()A.a(chǎn)-b0B.0ab1C.ab<
2024-12-04 23:45
【總結(jié)】《不等關(guān)系與不等式》教學(xué)目標(biāo)?1.使學(xué)生感受到在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,在學(xué)生了解了一些不等式(組)產(chǎn)生的實際背景的前提下,能列出不等式與不等式組.?2.學(xué)習(xí)如何利用不等式表示不等關(guān)系,利用不等式的有關(guān)基本性質(zhì)研究不等關(guān)系;?3.通過學(xué)生在學(xué)習(xí)過程中的感受、體驗、認(rèn)識狀況及理解程度,注重問題情境、實際背景的設(shè)置,
2025-03-13 05:16
【總結(jié)】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個實數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【總結(jié)】人教版高中數(shù)學(xué)必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列說法正確的是( )A.a(chǎn)b?ac2bc2 B.a(chǎn)b?a2b2C.a(chǎn)>
2025-06-18 13:49
【總結(jié)】第三章綜合測試(B)(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.設(shè)集合P={3,log2a},Q={a,b},若P∩Q={0},則P∪Q等于()A.{3,0}B.{3,0,1}C.{3,
2024-11-28 01:16
【總結(jié)】§基本不等式2abab??教學(xué)目標(biāo):1、知識與技能目標(biāo):(1)掌握基本不等式2abab??,認(rèn)識其運算結(jié)構(gòu);(2)了解基本不等式的幾何意義及代數(shù)意義;(3)能夠利用基本不等式求簡單的最值。2、過程與方法目標(biāo):(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;(2)體驗數(shù)形結(jié)合思想。
2024-11-19 08:01
【總結(jié)】第一章章末測試題(B)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.在△ABC中,已知a=3,b=1,A=130°,則此三角形解的情況為()A.無解B.只有一解C.有兩解D.解的個數(shù)不確定答案B解析
2024-11-28 01:20
【總結(jié)】雙基限時練(二十)一、選擇題1.不等式-6x2-x+2≤0的解集為()A.{x|-23≤x≤12}B.{x|x≤-23,或x≥12}C.{x|x≥12}D.{x|x≤-23}解析由-6x2-x+2≤0,得6x2+x-2≥0,x≥12或x≤-23.答案B2.
2024-12-04 23:46
【總結(jié)】第三章測試(時間:120分鐘滿分:150分)一、選擇題(5×10=50分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.已知集合M={x|x23
2024-12-05 01:55
【總結(jié)】畢節(jié)地區(qū)實驗高中不等式測試題命題者:陳溪一、選擇題:本大題共12小題,每小題5分,共60分.四個選項中,只有一項是符合目要求的.1.設(shè)x是實數(shù),則“x>0”是“|x|>0”的()A.充分而不必要條件B
2024-11-12 05:15
【總結(jié)】【創(chuàng)新設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)第三章函數(shù)的應(yīng)用章末檢測(B)新人教A版必修1(時間:120分鐘滿分:150分)一、選擇題(本大題共12小題,每小題5分,共60分)1.設(shè)方程|x2-3|=a的解的個數(shù)為m,則m不可能等于()A.1B.2C.3D.
2024-12-08 02:52
【總結(jié)】均值不等式的推廣:2、222(,)1122ababababRab????????3(,,)3abcabcabcR?????1、三、典例分析:,,abc222abcabbcca?????例1、已知是不全相等的實數(shù),求證:22
【總結(jié)】,ab3abab???ab例1、若正數(shù)滿足,則的取值范圍是什么?解:32ababab????當(dāng)且僅當(dāng)ab?時,等號成立。32abab???2()230abab????3ab??或1ab??(舍)9ab??ab?的取值范圍是[9,)??,ab3ab
【總結(jié)】1、均值不等式:課前熱身:2、均值不等式的變形:2(,)abababR????(,)2abababR????2()(,)2abababR????222abab??3、重要不等式的變形:)0(32)(2?????xxxxxf