【總結(jié)】正切函數(shù)的性質(zhì)與圖象考查知識點及角度難易度及題號基礎中檔稍難正切函數(shù)的性質(zhì)1、411正切函數(shù)性質(zhì)的應用2、57、9、10、1213正切函數(shù)的圖象及應用3、681.下列說法正確的是()A.正切函數(shù)在整個定義域內(nèi)是增函數(shù)B.正切函數(shù)在整個定義域內(nèi)是減函數(shù)C.函數(shù)y
2024-11-19 20:39
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(1)學案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標,牢記余弦函數(shù)的五個關鍵點,用五點法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關系,能說出函數(shù)co
2024-11-18 16:44
【總結(jié)】余弦函數(shù)圖像和性質(zhì)(二)(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標根據(jù)余弦函數(shù)圖象的特征,結(jié)合正弦函數(shù)的性質(zhì)學習余弦函數(shù)的性質(zhì):單調(diào)性、奇偶性、對稱性和周期性等。課堂內(nèi)容展示自學指導:余弦函數(shù)xycos?
【總結(jié)】第二章第2課時映射與函數(shù)一、選擇題1.下列各組中,集合P與M不能建立映射的是()A.P={0},M=?B.P={1,2,3,4,5},M={2,4,6,8}C.P={有理數(shù)},M={數(shù)軸上的點}D.P={平面上的點},M={有序?qū)崝?shù)對}[答案]A[解析]選項A中
2024-11-28 00:02
【總結(jié)】2020/12/25余弦函數(shù)圖象與性質(zhì)2020/12/25yxo1-12?23?2????2如何作出正弦函數(shù)的圖象(在精確度要求不太高時)?(0,0)(,1)2?(?,0)(,-1)23?(2?,0)五點畫圖法五點法——(0,0)(,1
2024-11-18 12:10
【總結(jié)】第三章一、選擇題1.函數(shù)y=cos2x2的最小正周期是()A.π3B.π4C.πD.2π[答案]D[解析]y=cos2x2=1+cosx2,∴函數(shù)y=cos2x2的最小正周期T=2π.2.下列各式中,值等于12的是()A.cos45°co
2024-11-28 01:11
【總結(jié)】正弦型函數(shù)y=Asin(ωx+φ)的圖象(課前預習案)班級:___姓名:________編寫:一、新知導學1、在函數(shù))sin(????tRy中,點P旋轉(zhuǎn)一周所需要的時間??2?T,叫做點P的______在1秒內(nèi),點P轉(zhuǎn)動的周數(shù)??21??Tf,叫做轉(zhuǎn)動的______。0
2024-11-18 16:45
【總結(jié)】第二章二次函數(shù)的性質(zhì)與圖象一、選擇題1.函數(shù)y=12x2-5x+1的對稱軸和頂點坐標分別是()A.x=5,??????5,-232B.x=-5,??????-5,232C.x=5,??????-5,232D.x=-5,??????5,-232[答案]A[解析
【總結(jié)】第三章第2課時指數(shù)函數(shù)的應用一、選擇題1.已知集合M={-1,1},N={x|122x+14,x∈Z},則M∩N=()A.{-1,1}B.{-1}C.{0}D.{-1,0}[答案]B[解析]解法一:驗證排除法:由題意可知0?M∩N,故排除C、D;又
2024-11-27 23:59
【總結(jié)】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設tanα、tanβ是方程x2-3x+2
2024-11-28 02:11
【總結(jié)】1.正切函數(shù)的性質(zhì)與圖象1.理解正切函數(shù)的性質(zhì),掌握正切函數(shù)的圖象的作法.2.能利用正切函數(shù)的圖象與性質(zhì)解決與正切函數(shù)有關的基本問題.基礎梳理一、正切函數(shù)的性質(zhì)1.正切函數(shù)的定義域和值域:定義域為??????x???x≠kπ+π2,k∈Z,值域為R.2.正切函數(shù)的周期性:y
2024-11-19 17:41
【總結(jié)】第三章第2課時對數(shù)函數(shù)的應用一、選擇題1.已知函數(shù)f(x)=lg1-x1+x,若f(a)=12,則f(-a)等于()A.12B.-12C.2D.-2[答案]B[解析]f(a)=lg1-a1+a=12,f(-a)=lg(1-a1+a)-1=-lg
2024-11-27 23:55
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正切函數(shù)的性質(zhì)與圖象1.能畫出y=tanx的圖象.(重點)2.理解正切函數(shù)在??????-π2,π2上的性質(zhì).(重點、難點)正切函數(shù)的性質(zhì)與圖象解析式y(tǒng)=tanx圖象
2024-11-19 17:33
【總結(jié)】第二章一次函數(shù)的性質(zhì)與圖象一、選擇題1.一次函數(shù)y=kx(k≠0)的圖象上有一點坐標為(m,n),當m0,n0,n0,∴k
【總結(jié)】§正切函數(shù)的性質(zhì)與圖象【學習目標細解考綱】1、掌握正切函數(shù)的圖象和性質(zhì).2、能正確應用正切函數(shù)的圖象和性質(zhì)解決有關問題.【知識梳理雙基再現(xiàn)】1、正切函數(shù)tanyx?的最小正周期為____________;tan()yx????的最小正周期為_____________.2、正切函數(shù)tan
2024-12-02 08:37