【總結(jié)】喬瑞霞蛟河三中:1.不等式,一元一次不等式2.不等式的解3.不等式的解集4.解一元一次不等式一.基本概念:?不等式的基本性質(zhì)(3條):?1)不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向____.?2)不等式兩邊都乘以(或除以)同一個
2025-08-05 01:06
【總結(jié)】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●比較法●綜合法●分析法
2025-08-11 14:49
【總結(jié)】2020年名師課堂輔導(dǎo)講座—高中部分[學(xué)習(xí)內(nèi)容]:1、不等式的性質(zhì)(1)aba-b0a=ba-b=0abbb,bcac(4)ab,c∈Ra+cb+c
2024-11-19 02:58
【總結(jié)】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●一元一次不等式的解法●一元二次不等式的
2025-08-20 08:58
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】2011年中考復(fù)習(xí)二輪材料函數(shù)、方程、不等式綜合應(yīng)用專題李建敏一、專題詮釋函數(shù)思想就是用聯(lián)系和變化的觀點看待或提出數(shù)學(xué)對象之間的數(shù)量關(guān)系。函數(shù)是貫穿在中學(xué)數(shù)學(xué)中的一條主線;函數(shù)思想方法主要包括建立函數(shù)模型解決問題的意識,函數(shù)概念、性質(zhì)、圖象的靈活應(yīng)用等。函數(shù)、方程、不等式的結(jié)合,是函數(shù)某一變量值一定或在某一范圍下的方程或不等式,體現(xiàn)了一般到特殊的觀念。也體現(xiàn)了
2025-04-16 12:35
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】不等式的文字應(yīng)用制作人:黃宇寧知識復(fù)習(xí)不等式的基本性質(zhì):⑴不等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號方向不變.即:如果ab,那么a+cb+c,a-cb-c;⑵不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.即:如果a&g
2025-05-05 18:36
【總結(jié)】第9課不等式與不等式組1.定義:(1)用連接起來的式子叫做不等式;(2)使不等式成立的未知數(shù)的值叫做;(3)一個含有未知數(shù)的不等式的解的全體,叫做;(4)求不等式的解集的過程或證明不等式無解的過程,叫做解不等式.
2025-08-05 00:56
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-10-19 08:39
【總結(jié)】不等式的性質(zhì)(復(fù)習(xí)課)一、基礎(chǔ)知識1、兩個數(shù)的大小關(guān)系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個數(shù)的大小的方法作差變形判斷符號得出結(jié)論3、作
2025-08-05 19:30
【總結(jié)】一、常見不等式1、一元一次不等式的法2、絕對值不等式x<-a或x>a-a<x<a|x|<a(a>0)|x|>a(a>0)ax>b或ax<b3、一元二次不等式的解法ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)
2024-11-06 13:39
2024-11-07 02:27
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流不等式一、選擇題1.“13x12”是“不等式|x-1|1成立”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件解析:選A.∵不等式|x-1|1的解集為(0,2),
2025-08-13 20:08