【總結(jié)】二次函數(shù)的圖象和性質(zhì)回答問題:說出下列函數(shù)的開口方向、對稱軸、頂點坐標(biāo):2152(1)()333yx???2(2)23yxx????2(3)341yxx???函數(shù)y=ax2+bx+c的對稱軸,頂點坐標(biāo)是什么?2yaxbxc???
2024-11-30 08:01
【總結(jié)】北師大版九年級下冊數(shù)學(xué)一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).(1)列表.(3)連線.(2)描點.?情境導(dǎo)入本節(jié)目標(biāo)y=x2的圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.y=x2的圖象,并能根據(jù)圖象認(rèn)識和理解二次函數(shù)
2025-06-17 23:49
【總結(jié)】北師大版九年級下冊數(shù)學(xué)、對稱軸和頂點坐標(biāo).(1)y=2(x-3)2-5(2)y=-(x+1)2(3)y=3(x+4)2+2移得到的?情境導(dǎo)入1.(1)開口:向上,對稱軸:直線x=3,頂點坐標(biāo)(3,-5)(2)開口:向下,對稱軸:直線x=-1,頂點坐標(biāo)(-1,0)(3)開口:向上,對稱軸:
2025-06-17 23:45
【總結(jié)】北師大版九年級下冊數(shù)學(xué)的圖象的頂點坐標(biāo)是;開口方向是;最值是.y=-2x2+3的圖象可由函數(shù)的圖象向平移個單位得到.y=-3x2的圖象向下平移2個單位可得
2025-06-17 23:51
【總結(jié)】北師大版九年級下冊數(shù)學(xué)函數(shù)y=x2y=-x2函數(shù)y=x2和y=-x2的圖象x24-2y=x2y=-x2圖象形狀開口方向?qū)ΨQ軸頂點坐標(biāo)拋物線拋物線向上向下y軸y軸(O,0)
2025-06-17 23:42
【總結(jié)】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在前面幾節(jié)課已經(jīng)學(xué)習(xí)過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質(zhì)。學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質(zhì)的探索過程,在探究過程中體會到了
2024-12-09 08:13
2025-06-17 12:49
【總結(jié)】求二次函數(shù)關(guān)系式農(nóng)安縣合隆中學(xué)徐亞惠一.選擇題(共8小題)1.如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么()A.a(chǎn)<0,b>0,c>0B.a(chǎn)>0,b<0,c
2024-11-28 17:46
【總結(jié)】二次函數(shù)y=ax2的圖像與性質(zhì)農(nóng)安縣合隆中學(xué)徐亞惠一.選擇題(共8小題)y=(a≠0),當(dāng)x>0時,它的圖象y隨x的增大而減小,那么二次函數(shù)y=ax2﹣ax的圖象只可能是()A.B.C
2024-11-28 13:07
2025-06-17 12:38
2025-06-17 12:45
2025-06-17 12:42
【總結(jié)】九年級數(shù)學(xué)下冊二次函數(shù)的圖象與性質(zhì)課時訓(xùn)練湘教版26yxx???的圖象與x軸交點的橫坐標(biāo)是()A.2和3?B.2?和3C.2和3D.2?和3?y關(guān)于x的函數(shù):????22211ykxkxk??????中滿足3k≤.(1)求證:此函數(shù)圖象與x
2024-11-15 03:50
【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達(dá)式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】專題復(fù)習(xí):二次函數(shù)的圖象與性質(zhì)復(fù)習(xí)目標(biāo):1、復(fù)習(xí)掌握二次函數(shù)的圖象與性質(zhì)。2、熟練求二次函數(shù)的解析式。3、掌握二次函數(shù)與一元二次方程及一元二次不等式的關(guān)系。課前熱身(學(xué)生獨立練習(xí),分小組批改)1、二次函數(shù)解析式的三種表示方法:(1)一般式:(2)交點式:____
2024-12-08 12:05