【總結】離散型隨機變量的分布列一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復進行;(2)試驗的所有結果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗例(1)某人射擊一次,可
2024-11-18 15:23
【總結】《離散型隨機變量及其分布列-離散型隨機變量分布列》教學目的?1理解離散型隨機變量的分布列的意義,會求某些簡單的離散型隨機變量的分布列;?⒉掌握離散型隨機變量的分布列的兩個基本性質(zhì),并會用它來解決一些簡單的問題.?⒊了解二項分布的概念,能舉出一些服從二項分布的隨機變量的例子?教學重點:離散型隨機變量的分布列的概念
2024-11-18 12:12
【總結】一、教學目標:1、知識與技能:會求出某些簡單的離散型隨機變量的概率分布。2、過程與方法:認識概率分布對于刻畫隨機現(xiàn)象的重要性。3、情感、態(tài)度與價值觀:認識概率分布對于刻畫隨機現(xiàn)象的重要性。二、教學重點:離散型隨機變量的分布列的概念。教學難點:求簡單的離散型隨機變量的分布列。三、教學方法:探析歸納,講練結合四
2024-11-19 10:27
【總結】量的方差高二數(shù)學選修2-3一、復習回顧1、離散型隨機變量的數(shù)學期望nniipxpxpxpxEX????????22112、數(shù)學期望的性質(zhì)bXaEbaXE???)()(P1xix2x······1p2pip···&
2024-11-17 19:27
【總結】2.3離散型隨機變量的均值與方差2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量
2024-11-20 03:13
【總結】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變
2024-12-05 06:39
【總結】§2.3離散型隨機變量的均值與方差§2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的
2024-11-19 19:35
【總結】離散型隨機變量的均值一.學習目標:(1)通過實例,理解取有限值的離散型隨機變量均值(數(shù)學期望)的概念和意義;(2)能計算簡單離散型隨機變量均值(數(shù)學期望),并能解決一些實際問題.二.課前自學:一.問題情境1、提出問題甲、乙兩個工人生產(chǎn)同一產(chǎn)品,在相同的條件下,他們生產(chǎn)100件產(chǎn)品所出的不合格品數(shù)分別用X1,X2表示,
2024-11-20 00:29
【總結】§隨機變量的數(shù)字特征(三)學習目標1.理解取有限個值的離散型隨機變量的方差及標準差的概念.2.能計算簡單離散型隨機變量的方差,并能解決一些實際問題.3.掌握方差的性質(zhì),以及兩點分布、二項分布的方差的求法,會利用公式求它們的方差.學習過程【任務一】知識要點1.離散型隨機變量的方差、標準差設離散型隨機變量X
2024-12-03 11:29
【總結】《離散型隨機變量的均值與方差-期望值》教學目標?1了解離散型隨機變量的期望的意義,會根據(jù)離散型隨機變量的分布列求出期望.?⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的期望?教學重點:離散型隨機變量的期望的概念?教學難點:根據(jù)離
【總結】超幾何分布多做練習開門見山介紹兩點分布作業(yè):自學《隨堂通》6871PP至離散型隨機變量的分布列(三)今天,這節(jié)課我們來認識兩個特殊的分布列.首先,看一個簡單的分布列─兩點分布列:如果隨機變量?的分布列為:這樣的分布列稱為兩點分布列,稱隨機變量?服從兩點分布
2024-11-17 12:01
【總結】§.(1、2)離散型隨機變量及其分布列學習目標,會求某些簡單的離散型隨機變量的分布列。,并會用它來解決一些簡單的問題。學習過程【任務一】問題分析問題1:拋擲一枚質(zhì)地均勻的骰子,觀察得到的點數(shù),試驗可能出現(xiàn)的結果如何?問題2:拋擲一枚質(zhì)地均勻的硬幣,記“正面向上”為1,“反面向上”為0,試驗可能出現(xiàn)
【總結】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【總結】離散型隨機變量的分布列我開始學習解答概率分布列問題時,經(jīng)常出錯.后來通過慢慢摸索,發(fā)現(xiàn)大部分概率分布列問題在解答時需要用到分類討論的思想,下面談談自己的粗淺體會.1、對隨機變量?的取值進行分類例15封不同的信,投入三個不同的信箱,且每封信投入每個信箱的機會均等,?是三個箱子中放有信件數(shù)目的最大值.求?的分布列.分析:三個箱
2024-12-02 10:00