【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習|M
2025-11-10 16:21
【總結】教學設計方案課題名稱雙曲線及其標準方程姓名王菲菲工作單位河北黃驊中學年級學科高二數(shù)學教材版本人教A版一、教學內(nèi)容分析在高中數(shù)學中,雙曲線及其標準方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標圖線的重點。他是為培養(yǎng)學生對于坐標圖線了解函數(shù)關系打下基礎,其關鍵在于了解學生對于圖像認識的能力,培養(yǎng)學生用數(shù)軸圖形了解函數(shù)信息的能力?,F(xiàn)如今在數(shù)學
2025-08-05 04:13
【總結】y(第二課時)xoMF2F1(第二課時)雙曲線及其標準方程系數(shù)哪個為正,焦點就在哪個軸上平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標準方程
2025-11-10 16:17
【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習雙曲
2025-05-06 18:03
【總結】雙曲線的標準方程(第一課時) ?。ㄒ唬┙虒W目標 掌握雙曲線的定義,會推導雙曲線的標準方程,能根據(jù)條件求簡單的雙曲線標準方程. ?。ǘ┙虒W教程 【復習提問】 由一位學生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標準方程是怎樣的? 【新知探索】 ?。p曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點的軌跡
2025-07-14 19:04
【總結】2.2雙曲線2.雙曲線的定義與標準方程課堂互動講練知能優(yōu)化訓練課前自主學案學習目標學習目標,幾何圖形及標準方程的推導過程.2.掌握雙曲線的標準方程.3.會利用雙曲線的定義和標準方程解決簡單的實際問題.課前自主學案溫故夯基3已知橢圓方程為5x
2025-10-31 02:17
【總結】富源縣第一中學葉學理問題1:橢圓的定義是什么?平面內(nèi)與兩個定點的距離的和等于常數(shù)(大于)的點的軌跡叫做橢圓。21,FF21FF問題2:如果把上述定義中“距離的和”改為“距離的差”那么點的軌跡會發(fā)生怎樣的變化?平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a
2025-11-12 22:44
【總結】雙曲線的概念及標準方程雙曲線的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線。兩焦點的距離叫做雙曲線的焦距(2c)這兩個定點叫做雙曲線的焦點。1、建系:以線段F1F2所在直線為x軸,線段F1F2的垂直平分
2025-10-31 02:27
【總結】雙曲線的定義及標準方程橢圓的第一定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡aPFPF221???橢圓的第二定義(準線)?點M與定點F的距離和它到定直線L的距離的比是常數(shù)的點的軌跡。標準方程圖象范圍對稱性
2025-10-31 01:25
【總結】第二章圓錐曲線與方程§橢圓及其標準方程(第二課時)??012222????babyax12yoFFMxyxoF2F1M??012222????babxay定義圖形
2025-08-04 07:38
【總結】學習重點:雙曲線的定義和雙曲線的標準方程學習難點:雙曲線的標準方程的推導。一課前自主預習1、若橢圓154116252222????yxyx和雙曲線的共同焦點為F1,F(xiàn)2,P是兩曲線的一個交點,則|PF1|·|PF2|的值為()A.2212、已知點
2025-11-10 10:38
【總結】一、選擇題:1.已知點)0,4(1?F和)0,4(2F,曲線上的動點P到1F、2F的距離之差為6,則曲線方程為()A.17922??yxB.)0(17922???yxyC.17922??yx或17922??xyD.)0(17922???xyx
2025-11-07 00:54
【總結】貴港市東龍中心小學韋雪球雙曲線及其標準方程1.什么叫做橢圓?2a兩定點F1、F2(|F1F2|=2c)和的距離的等于常數(shù)(2a|F1F2|=2c0)的點的軌跡.平面內(nèi)與1F2F??0,c???0,cXYO??yxM,引入問題:兩定點F1、F2
2025-10-31 23:30
【總結】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2025-11-10 15:32
【總結】一、回顧1、橢圓的第一定義是什么?2、橢圓的標準方程,焦點坐標是什么?定義圖象方程焦點關系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-07 10:53