【總結(jié)】課題:圓錐曲線綜合復習江蘇省外國語學?!窘虒W目標】1、掌握橢圓的標準方程,會求橢圓的標準方程;掌握橢圓的簡單幾何性質(zhì),能運用橢圓的標準方程和幾何性質(zhì)處理一些簡單的實際問題,了解運用曲線的方程研究曲線的幾何性質(zhì)的思想方法.2、了解雙曲線的標準方程,會求雙曲線的標準方程;了解雙曲線的簡單幾何性質(zhì).3、了解拋物線的標準
2024-11-15 17:58
【總結(jié)】導數(shù)的概念同步練習1.函數(shù)y=f(x)在x=x0處可導是它在x=x0處連續(xù)的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件2.在曲線y=2x2-1的圖象上取一點(1,1)及鄰近一點(1+Δx,1+Δy),則xy??等于A.4Δx+2Δx2B.4+2Δx
2024-11-15 11:50
【總結(jié)】橢圓及其標準方程同步練習一,選擇題:1.方程Ax2+By2=C表示橢圓的條件是()(A)A,B同號且A≠B(B)A,B同號且C與異號(C)A,B,C同號且A≠B(D)不可能表示橢圓2.已知橢圓方程為221499xy??中,F(xiàn)1,F2分別為它的兩個焦點,則下列
2024-12-05 06:35
【總結(jié)】雙曲線的定義:平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a點的軌跡叫做雙曲線。12()FF小于F1,F2-----焦點||MF1|-|MF2||=2a|F1F2|-----焦距.F2.F1Myox注意:對于雙曲線定義須抓住三點
2024-11-17 23:34
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì).教學重點:橢圓的幾何性質(zhì)——范圍、對稱性、頂點.教學難點:橢圓幾何性質(zhì)的研究過程,即如何運用橢圓標準方程研究橢圓的幾何性質(zhì).教學過程:
2024-12-04 18:02
【總結(jié)】平均變化率一、填空題1.函數(shù)關系h(t)=-++10,從t=0到t=,自變量增量是________.2.在x=1附近,取Δx=,在四個函數(shù)①y=x;②y=x2;③y=x3;④y=1x中,平均變化率最大的是________(填序號).3.已知曲線y=14x2和這條曲線上的一點P(1,
【總結(jié)】常見函數(shù)的導數(shù)一、填空題1.與直線2x-y+4=0平行的拋物線y=x2的切線方程是________.2.曲線y=x3在點(1,1)處的切線與x軸、直線x=2所圍成的三角形的面積為________.3.已知f(x)=xα,若f′(-1)=-4,則α的值等于________.4.質(zhì)點的運動方程是s=t
2024-12-05 03:04
【總結(jié)】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的幾何性質(zhì)(1)導學案(無答案)蘇教版選修1-1【學習目標】;?!菊n前預習】221625400xy??表示什么樣的曲線,你能利用以前學過的知識畫出它的圖形嗎?,橢圓標準方程221(0)xyabab????有什么特點31頁至第33頁,回答
2024-11-20 00:31
【總結(jié)】高一數(shù)學同步測試—(指數(shù)函數(shù))一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(nèi)(每小題5分,共50分).1.下列各式中成立的一項()A.7177)(mnmn?B.31243)3(???C.43433)(yxy
2024-11-15 17:59
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標為(0,1).
【總結(jié)】課件制作者:羅定中學姚仕森橢圓的定義及其定理太空中有些天體運行的軌道是橢圓形的。生活中的橢圓油罐車的橫截面是橢圓數(shù)學實驗取一條細繩,把它的兩端固定在板上的兩點,把細繩拉緊,在板上慢慢移動用鉛筆尖奎屯王新敞新疆就可以畫出一個橢圓。橢圓及其標準方程2F1FM答:兩個定點,繩長.
2024-11-17 17:35
【總結(jié)】數(shù)學:2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2024-11-17 17:38
【總結(jié)】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的標準方程課后知能檢測蘇教版選修2-1一、填空題1.橢圓25x2+16y2=400的焦點坐標為________.【解析】橢圓方程可化為x216+y225=1,∴c2=9,∴c=3,∴焦點坐標為(0,±3).
2024-12-05 09:30
【總結(jié)】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標準方程首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
2024-11-16 23:27
【總結(jié)】導數(shù)在實際生活中的應用一、填空題1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為s=14t4-53t3+2t2,那么速度為零的時刻是________.2.某公司生產(chǎn)一種產(chǎn)品,固定成本為20210元,每生產(chǎn)一單位的產(chǎn)品,成本增加100元,若總收入R與年產(chǎn)量x的關系是R(x)=?????-x3900+400x,