【總結(jié)】數(shù)學實驗報告1.題目:某容器盛滿水后,底端直徑為d0的小孔開啟(如圖1),根據(jù)水力學知識,當水面高度為h時,誰從小孔中流出的速度為v=*(g*h)^(其中g為重力加速度,)1)若容器為倒圓錐形(如圖1),,小孔直徑d為3cm,為水從小孔中流完需要多少時間;2min時水面高度是多少。2)若容器為倒葫蘆形(如圖2),,小孔直徑d為3cm,由底端(記x=0)(
2025-01-16 17:00
【總結(jié)】1山東英才學院畢業(yè)論文設計論文題目:微分方程數(shù)值解二級學院:計算機電子信息工程學院學科專業(yè):計算機及應用學號:姓
2024-12-03 17:07
【總結(jié)】第二章習題答案第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2隱藏答案q3顯示
2025-06-19 20:50
【總結(jié)】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習題和總結(jié)主要內(nèi)容主
2025-08-04 15:59
【總結(jié)】偏微分方程數(shù)值解試題(06B)參考答案與評分標準信息與計算科學專業(yè)一(10分)、設矩陣對稱,定義,.若,則稱稱是的駐點(或穩(wěn)定點).矩陣對稱(不必正定),求證是的駐點的充要條件是:是方程組的解解:設是的駐點,對于任意的,令,(3分),即對于任意的,,特別取,則有,得到.(3分)反之,若滿足,則對于任意的,,因此是的最小值點.(4分)評分標
2025-06-19 20:37
【總結(jié)】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【總結(jié)】課程名稱(中文):偏微分方程數(shù)值解專題課程名稱(英文):Sometopicsonnumericalsolutionsofpartialdifferentialequations一)課程目的和任務:有限差分方法是微分方程定解問題的最廣泛的數(shù)值方法之一,其基本思想是用差商近似代替導數(shù),用有限個未知量的差分方程組的解作為微分方程定解問題的解。本課程旨在介紹非線性拋物和
2025-06-07 22:58
【總結(jié)】主講:林亮時間:性質(zhì):選修對象:信科08-1、2微分方程數(shù)值解法差分格式的穩(wěn)定性和收斂性問題的提出我們先看一個數(shù)值例子,考慮初邊值問題??????????????????????????????
2025-01-04 22:48
【總結(jié)】微分方程邊值問題的數(shù)值方法本部分內(nèi)容只介紹二階常微分方程兩點邊值問題的的打靶法和差分法。二階常微分方程為 當關于為線性時,即,此時變成線性微分方程 對于方程或,其邊界條件有以下3類:第一類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第二類邊界條件為 當或者時稱為齊次的,否則稱為非齊次的。第三類邊界條件為 其中,當或者稱為
2025-06-07 19:14
【總結(jié)】微分方程的基礎知識與練習(一)微分方程基本概念:首先通過一個具體的問題來給出微分方程的基本概念。(1)一條曲線通過點(1,2),且在該曲線上任一點M(x,y)處的切線的斜率為2x,求這條曲線的方程。 解(1)同時還滿足以下條件:時,(2) 把
2025-06-24 22:55
【總結(jié)】微分方程 什么是微分方程?它是怎樣產(chǎn)生的?這是首先要回答的問題. 300多年前,由牛頓(Newton,1642-1727)和萊布尼茲(Leibniz,1646-1716)所創(chuàng)立的微積分學,是人類科學史上劃時代的重大發(fā)現(xiàn),而微積分的產(chǎn)生和發(fā)展,,,運動規(guī)律很難全靠實驗觀測認識清楚,,運動物體(變量)與它的瞬時變化率(導數(shù))之間,通常在運動過程中按照某種己知定律存在著聯(lián)系,我們?nèi)?/span>
2025-06-24 23:00
【總結(jié)】微分方程例題選解1.求解微分方程。解:原方程化為,通解為由,,得,所求特解為。2.求解微分方程。解:令,,原方程化為,分離變量得,積分得,原方程的通解為。3.求解微分方程。解:此題為全微分方程。下面利用“湊微分”的方法求解。原方程化為,由,得,
2025-07-24 09:11
【總結(jié)】目錄上頁下頁返回結(jié)束常系數(shù)線性微分方程組*第十節(jié)解法舉例解微分方程組高階微分方程求解消元代入法算子法第七章目錄上頁下頁返回結(jié)束常系數(shù)線性微分方程組解法步驟:第一步用消元法消去其他未知函數(shù),第二步求出
2025-08-04 09:09
【總結(jié)】基礎知識偏微分方程的定解問題各種物理性質(zhì)的定常(即不隨時間變化)過程,都可用橢圓型方程來描述。其最典型、最簡單的形式是泊松(Poisson)方程(1)特別地,當f(x,y)≡0時,即為拉普拉斯(Laplace)方程,又稱為調(diào)和方程(2)帶有穩(wěn)定熱源或內(nèi)部無熱源的穩(wěn)定溫度場的溫度分布,不可壓縮流體的穩(wěn)定無旋流動及靜電場的電勢等均滿足這類方程。
2025-06-19 20:14
【總結(jié)】1常微分方程OrdinaryDifferentialEquations(5)高階常系數(shù)線性微分方程惺恰突訣粹能片扛瞬雒境畝誹率衙荇栽爸檢磷觖錦梅呆布嵋笑賤縶腹鏈雜查再芪濘兄罰裂篷莨盈逞窘胡恭鈀胗蹲躅擔溽擁絳伊渙蛩鐵麝瑭攥絨匆尾渾呃踺遲窖斗七缽畔諱戌脧挪饑飼硪阿璧趕懂稻夫財奪惟瘧枇仵孛罌體絞滋廩僅2§4.高階線性微分方程(
2024-10-19 18:02