【總結(jié)】試作出:a+a+a和(-a)+(-a)+(-a)已知非零向量aaaaaOABC-a-a-aPQMN相同向量相加以后,和的長度與方向有什么變化?一般地,實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa,它的長度和方向規(guī)定如下:(1)
2024-08-01 03:15
【總結(jié)】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2024-10-22 18:49
【總結(jié)】向量的概念既有大小又有方向的量叫現(xiàn)實生活中還有哪些量既有大小又有方向?哪些量只有大小沒有方向?距離、身高、質(zhì)量、時間、面積等位移、力、速度、加速度、電場強度等向量一:向量定義注意:數(shù)量與向量的區(qū)別1、數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大?。?、向量不僅有大小還有方向,具有雙
2024-08-10 17:32
【總結(jié)】平面向量的正交分解及坐標表示平面向量的坐標運算1.下列說法正確的有()①向量的坐標即此向量終點的坐標.②位置不同的向量其坐標可能相同.③一個向量的坐標等于它的終點坐標減去它的始點坐標.④相等的向量坐標一定相同.A.1個B.2個C.3個D.4個解析:向量的坐標是其終點坐標減去起點對
2024-11-19 17:32
【總結(jié)】平面向量的坐標運算學習目標:1.了解平面向量的正交分解,掌握向量的坐標表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標運算法則.3.正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.【學法指導(dǎo)】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標表示的理論依據(jù).向量的坐標表示
2024-11-19 17:41
【總結(jié)】平面向量的正交分解及坐標表示平面向量的坐標運算考查知識點及角度難易度及題號基礎(chǔ)中檔稍難平面向量的坐標表示1、2、46平面向量的坐標運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標為()A.(1,4)
【總結(jié)】已知兩個非零向量a和b,作OA=a,OB=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角。OBAθ問題1:回憶一下物理中“功”的計算,功的大小與哪些量有關(guān)?結(jié)合向量的學習你有什么想法?θ|b|cosθabB1
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點三十三分。,§6平面向量數(shù)量積的坐標表示,第二頁,編輯于星期六:點三十三分。,,自主學習梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點三十三分。,,第四頁,編...
2024-10-22 18:51
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-18 01:33
【總結(jié)】北師大南山附中榮紅莉Email:平面向量的坐標運算xy0A(x,y)a《平面向量坐標運算》教學說明教材分析教法學法教學過程教學評價重點難點教學目標教材的地位和作用承上啟下;推進了立體幾何的改革;使空間結(jié)構(gòu)系
2024-11-09 00:34
【總結(jié)】復(fù)習引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關(guān)鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內(nèi)的兩個不共線向量
2024-11-17 15:02
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學年高中數(shù)學平面向量線性運算的坐標表示課后訓練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14
【總結(jié)】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【總結(jié)】復(fù)習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
2024-11-11 21:09