【總結(jié)】中考數(shù)學平面向量 初中數(shù)學知識點:平面向量 向量的定義: 既有方向又有大小的量叫做向量。 向量的表示: 具有方向的線段叫做有向線段,以A為起點,B為終點的有向線段記作...
2024-12-06 03:06
【總結(jié)】-1-2022屆高考模擬試題分類(大綱版):集合與常用邏輯用語1.(2022貴州四校一聯(lián))已知集合2{|20}Axxxa????,且1A?,則實數(shù)a的取值范圍是(A)A.??,1??B.??1,??C.??0,??D.(,1)??2.(
2025-01-07 19:40
【總結(jié)】平面向量單元復(fù)習題(一)一、選擇題(本大題共10小題,每小題5分,共50分)1.下列命題正確的是()a,b滿足|a|>|b|且a與b同向,則a>ba、b,
2025-01-09 16:02
【總結(jié)】青島家教鄭州家教蘇州家教天津家教第1頁共14頁2022年高考數(shù)學應(yīng)考復(fù)習精品資料·解題技巧第二講平面向量【考點透視】“平面向量”是高中新課程新增加的內(nèi)容之一,高考每年都考,題型主要有選擇題、填空題,也可以與其他知
2025-01-09 16:30
【總結(jié)】范文范例參考平面向量高考真題精選(一) 一.選擇題(共20小題)1.(2017?新課標Ⅱ)設(shè)非零向量,滿足|+|=|﹣|則( ?。〢.⊥ B.||=|| C.∥ D.||>|| 2.(2017?新課標Ⅱ)已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則?(+)的最小值是( ?。〢.﹣2 B.﹣ C.﹣ D.﹣1 3.(2017?浙江
2025-04-17 01:00
【總結(jié)】平面向量【學法導(dǎo)航】向量是既有大小又有方向的量,從其定義可以看出向量既具有代數(shù)特征,又具有幾何特征,因此我們要借助于向量可以將某些代數(shù)問題轉(zhuǎn)化為幾何問題,又可將某些幾何問題轉(zhuǎn)化為代數(shù)問題,在復(fù)習中要體會向量的數(shù)形結(jié)合橋梁作用。能否理解和掌握平面向量的有關(guān)概念,如:共線向量、相等向量等,它關(guān)系到我們今后在解決一些相關(guān)問題時能否靈活應(yīng)用的問題。這就要求我們在復(fù)習中應(yīng)首先立足課本,打好基礎(chǔ)
2025-08-04 10:31
【總結(jié)】湖南長郡衛(wèi)星遠程學校平面向量的坐標運算平面向量的坐標運算主講:王毅湖南長郡衛(wèi)星遠程學校提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什么?什么叫做平面向量的基底?提問:湖南長郡衛(wèi)星遠程學校(1)平面向量的基本定理的內(nèi)容是什
2024-11-09 02:25
【總結(jié)】下列命題:①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則②在中,A=B是sinA=sinB的充要條件.③若為非零向量,且,則.④要得到函數(shù)的圖像,只需將函數(shù)的圖像向右平移個單位.其中真命題的個數(shù)有 C.3 答案:B來源:09年陜西西安月考三題型:選擇題,難度:中檔已知向量,,.(
2025-01-14 09:48
【總結(jié)】第八單元平面向量(1)若,且,則向量與的夾角為()A30°B60°C120°D150°(2)P是△AB
2025-06-07 23:43
【總結(jié)】最后沖刺——平面向量與三角函數(shù)1.平面向量例1(1)已知,是平面內(nèi)兩個互相垂直的單位向量,若向量滿足,則的最大值是(2)如圖,在△ABC中,設(shè),,AP的中點為Q,BQ的中點為R,CR的中點為P,若,則,AOBP例1(3)(3)如圖,在中,點P是線段OB及線段AB延長線所圍成的陰影區(qū)域(含邊界)的任意
2025-08-17 04:35
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【總結(jié)】考綱導(dǎo)讀 平面向量 1.理解向量的概念,掌握向量的幾何表示,了解共線向量的概念. 2.掌握向量的加法和減法的運算法則及運算律. 3.掌握實數(shù)與向量的積的運算法則及運算律,理解兩個向量共線的...
2025-03-15 04:02
【總結(jié)】專題五:平面向量專題備考指導(dǎo)及考情分析:平面向量是高中數(shù)學的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學試題中的一道靚麗的風景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質(zhì)和運算法則,以及基本運算技能;(2)考查向
2025-08-16 02:00
【總結(jié)】第3講平面向量感悟高考明確考向(2010·天津)如圖,在△ABC中,AD⊥AB,???ADACAD則,1||,3BDBC?.解析設(shè)BD=a,則BC=3a,作CE⊥BA交BA的延長線于E,可知∠DAC=∠ACE,在Rt
2024-11-12 19:04
【總結(jié)】復(fù)習模塊:平面向量一、知識點5(1)平面向量的概念及線性運算平面向量兩要素:大小,方向。零向量:記作0,手寫時記做,方向不確定。單位向量:模為1的向量。平行的向量(共線向量):方向相同或相反的兩個非零向量,記作//b。規(guī)定:零向量與任何一個向量平行。相等向量:模相等,方向相同,記作a=b。負向量:與非零向量的模相等,方向相反的向量,記作。規(guī)定:零
2025-04-16 12:58