【總結】第一篇:基本不等式的證明 重要不等式及其應用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【總結】一、設疑引入等關系嗎?找出一些相等關系或不能在這個圖中數學家大會的會標,你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當且僅當我們有一般地,對于任意實數二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結】高二數學(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質量.不過,我們可作第二次測量:把物體調換到天平的另一盤上,此時稱得物體的質量為的質量呢?:
2025-08-05 03:53
【總結】—求函數的最值1、如果a,b是正數,那么(當且僅當a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當a、b∈R成立嗎?)
2024-11-03 19:19
【總結】基本不等式及應用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結】第一篇:基本不等式說課 基本不等式 一、教材分析 本節(jié)課是人教版高中數學必修5中第三章第4節(jié)的內容。二元均值不等式。這是在學習了“不等式的性質”、“不等式的解法”及“線性規(guī)劃”的基礎上對不等...
2024-11-15 02:54
【總結】第一篇:基本不等式教學設計 基本不等式 一、教學設計理念: 注重學生自主、合作、探究學習,、教學設計思路: 這節(jié)課的目標定位分為三個層面: 第一層面:知識與技能層面,①了解兩個正數的算術平均...
2024-11-14 13:44
【總結】基本不等式在求最值中的應用與完善楊亞軍函數的最值是函數這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實際生活及生產實踐中的應用。高考應用題幾乎都與最值問題有關,,才能更好地去解決實際應用問題。一、基本不等式的內容及使用要點1、二元基本不等式:①a,b∈R時,a2+b2≥2ab(當且僅當a=b時“=”號成立);②a,b≥0時,a+b
2025-08-05 01:31
【總結】§3.4基本不等式:(一)教案咸寧高中:徐浩全◆內容分析本節(jié)課是《數學必修(5)》第三章第四節(jié)基本不等式的內容。在前幾節(jié)課剛剛學習了不等式的性質、一元二次不等式、二元一次不等式(組)與線性規(guī)劃問題,這些內容為本節(jié)課打下了堅實的基礎;同時,基本不等式的學習為今后解決最值問題提供了新的方法,為不等式的證明提供了有力的幫助,在高中數學中有著重要的地位,是高考的重點內容。本節(jié)內容
2025-04-16 12:12
【總結】基本不等式作業(yè)(一)1.下列不等式成立的是()A.abba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【總結】高考基本不等式專題典題精講例1(1)已知0<x<,求函數y=x(1-3x)的最大值;(2)求函數y=x+的值域.思路分析:(1)由極值定理,可知需構造某個和為定值,可考慮把括號內外x的系數變成互為相反數;(2)中,未指出x>0,因而不能直接使用基本不等式,需分x>0與x<0討論.(1)解法一:∵0<x<,∴1-3x>0.∴y=x(1-3x)=·3x(1-3
2025-03-25 02:05
【總結】基本不等式【學習目標】ab?2ba?的證明方法,要求學生掌握算術平均數與幾何平均數的意義,并掌握“均值不等式”及其推導過程。.【學習重難點】理解利用基本不等式ab?2ba?求函數的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【總結】基本不等式的綜合應用基本不等式是人教版高中數學必修5第三章第四節(jié)的內容,在高考中占有很重要的比重。而同學們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結合教學中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據:(1)當且時,,當且僅當時等號成立,簡記為“和定積最大”(2)當且時,,當且僅當時等號成立,簡
2025-07-23 12:30
【總結】(第一課時)導學案【課程標準要求】①探索并了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(小)值問題.【學習目標】①經歷由幾何圖形抽象出重要不等式的過程,會用比較法證明重要不等式;②經歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關系及等號成立的條件;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經歷從不同角度探索基本不等式的證明過程,加深認識基本不等
2025-04-16 12:23