【總結(jié)】高三單元滾動(dòng)檢測卷·數(shù)學(xué)考生注意:1.本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共4頁.2.答卷前,考生務(wù)必用藍(lán)、黑色字跡的鋼筆或圓珠筆將自己的姓名、班級(jí)、學(xué)號(hào)填寫在相應(yīng)位置上.3.本次考試時(shí)間120分鐘,滿分150分.4.請(qǐng)?jiān)诿芊饩€內(nèi)作答,保持試卷清潔完整.單元檢測八立體幾
2025-01-09 11:37
【總結(jié)】58《立體幾何總復(fù)習(xí)》
2024-11-09 08:45
【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測法畫出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-16 12:13
【總結(jié)】清華北大家教中心家教電話:010-62561255北京1對(duì)1上門家教品牌第8章第1節(jié)一、選擇題1.(2020·崇文區(qū))“m=-2”
2025-08-10 22:57
【總結(jié)】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時(shí)卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計(jì)算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-09 12:27
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識(shí)與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2024-10-16 20:16
【總結(jié)】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價(jià)值。◆從古籍文獻(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用?!粼O(shè)計(jì)展板:我國一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美。基本觀點(diǎn)1、
2025-05-11 22:03
【總結(jié)】立體幾何中的向量方法1.(2012年高考(重慶理))設(shè)四面體的六條棱的長分別為1,1,1,1,和,且長為的棱與長為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O(shè)為原點(diǎn),分別以O(shè)B、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標(biāo)系中有直三棱柱,,則直線與直線夾角的余弦值為 ( ?。〢.
2025-04-17 13:06
【總結(jié)】高三數(shù)學(xué)立體幾何復(fù)習(xí)一、填空題1.分別在兩個(gè)平行平面內(nèi)的兩條直線間的位置關(guān)系不可能為①平行②相交③異面④垂直【答案】②【解析】兩平行平面沒有公共點(diǎn),所以兩直線沒有公共點(diǎn),所以兩直線不可能相交2.已知圓錐的母線長
2025-06-24 15:29
【總結(jié)】數(shù)列與不等式專題七n數(shù)列與不等式的綜合題是高考常見的試題.這類試題,對(duì)數(shù)列方面的考查多屬基礎(chǔ)知識(shí)和基本技能的層級(jí),而對(duì)不等式的考查,其口徑往往比較寬,難度的調(diào)控幅度比較大,有時(shí)達(dá)到很高的層級(jí).試題
2024-11-11 08:49
【總結(jié)】8平面解析幾何內(nèi)容概述解析幾何是17世紀(jì)數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。與課程改革前相比,中學(xué)解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2024-08-24 23:35
【總結(jié)】黃岡市交流試卷(理)團(tuán)風(fēng)中學(xué)數(shù)學(xué)組一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,,若,則符合條件的實(shí)數(shù)的值組成的集合為()A.B.C.D.2.等比數(shù)列的前三項(xiàng)依次為1,,,則實(shí)數(shù)的值是()A.B.C.或
2025-08-04 17:42
【總結(jié)】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-08 14:05
【總結(jié)】精品資源第18講 平面向量與解析幾何在高中數(shù)學(xué)新課程教材中,學(xué)生學(xué)習(xí)平面向量在前,學(xué)習(xí)解析幾何在后,而且教材中二者知識(shí)整合的不多,很多學(xué)生在學(xué)習(xí)中就“平面向量”解平面向量題,不會(huì)應(yīng)用平面向量去解決解析幾何問題。用向量法解決解析幾何問題思路清晰,過程簡潔,有意想不到的神奇效果。著名教育家布魯納說過:學(xué)習(xí)的最好刺激是對(duì)所學(xué)材料的興趣,簡單的重復(fù)將會(huì)引起學(xué)生大腦疲勞,學(xué)習(xí)興趣衰退。這充分揭示
2025-06-29 17:04
【總結(jié)】第18講平面向量與解析幾何在高中數(shù)學(xué)新課程教材中,學(xué)生學(xué)習(xí)平面向量在前,學(xué)習(xí)解析幾何在后,而且教材中二者知識(shí)整合的不多,很多學(xué)生在學(xué)習(xí)中就“平面向量”解平面向量題,不會(huì)應(yīng)用平面向量去解決解析幾何問題。用向量法解決解析幾何問題思路清晰,過程簡潔,有意想不到的神奇效果。著名教育家布魯納說過:學(xué)習(xí)的最好刺激是對(duì)所學(xué)材料的興趣,簡單的重復(fù)將會(huì)引起學(xué)生大腦疲勞,學(xué)習(xí)興趣
2024-12-05 11:26