【文章內(nèi)容簡介】
ueCo = SoedTN(d1) XerTN(d2)Co = 100 X .6664 95 e .10 X .25 X .5714 Co = 隱含波動(dòng)性 Implied Volatility用 布萊克 斯科爾斯公式和實(shí)際期權(quán)價(jià)格來解決 波動(dòng)性Using BlackScholes and the actual price of the option, solve for volatility.隱含波動(dòng)性是否與股票具有一致性?Is the implied volatility consistent with the stock?2117看跌期權(quán)價(jià)值:布萊克 斯科爾斯Put Option Value: BlackScholesP=XerT [1N(d2)] S0edT [1N(d1)] 用上例的數(shù)據(jù) Using the sample dataP = $95e()() $100 ()P = $2118看跌期權(quán)定價(jià):用看漲 看跌期權(quán)平價(jià)關(guān)系Put Option Valuation: Using PutCall ParityP = C + PV (X) So = C + XerT SoUsing the example dataC = X = 95 S = 100r = .10 T = .25P = + 95 e X .25 100P = 2119用布萊克 斯科爾斯公式Using the BlackScholes Formula 套期:套期保值率或 d 系數(shù) Hedging: Hedge ratio or delta 股票價(jià)格需要套期保值防范所持有期權(quán)的價(jià)格變化風(fēng)險(xiǎn) The number of stocks required to hedge against the price risk of holding one option 看漲期權(quán)的 套期保值率 Call = N (d1) 看跌期權(quán)的 套期保值率 Put = N (d1) 1 2120用布萊克 斯科爾斯公式Using the BlackScholes Formula期權(quán)彈性 Option Elasticity期權(quán)價(jià)值變化 1%所對(duì)應(yīng)的股票價(jià)值的百分比變化Percentage change in the option’s value given a 1% change in the value of the underlying stock2121投資組合保險(xiǎn) – 保護(hù)股票價(jià)值的下跌Portfolio Insurance Protecting Against Declines in Stock Valuel 買看跌期權(quán) 價(jià)格下跌保護(hù)和沒有限制的向上的潛在收益藹 Buying Puts results in downside protection with unlimited upside potentiall 限制 Limitations –如果使用指數(shù)到看跌期權(quán)則會(huì)產(chǎn)生循跡誤差 Tracking errors if indexes are used for the puts–看跌期權(quán)的到期時(shí)間可能很短 Maturity of puts may be too short–套期保值率或 d 系數(shù)在股票價(jià)值變化時(shí)隨之變化 Hedge ratios or deltas change as stock values change2122Summary 期權(quán)的價(jià)值包括內(nèi)在價(jià)值與時(shí)間價(jià)值,或 “ 波動(dòng)性 ”價(jià)值。波動(dòng)性價(jià)值是如果股票價(jià)格與預(yù)測變動(dòng)方向相反則選擇不執(zhí)行期權(quán)的權(quán)利。因此,不論股票價(jià)格如何變動(dòng),期權(quán)擁有者的損失不會(huì)超過獲得期權(quán)的成本。 Option values may be viewed as the sum of intrinsic