【總結(jié)】初一數(shù)學(xué)不等式與不等式組 中考數(shù)學(xué):不等式與不等式組 1不等式的概念、性質(zhì)及解集的表示1、不等式一般地,用符號“”(或“≥”)以及“≠”連接的式子叫做不等式。能使不等式成立的未知數(shù)的值...
2024-12-03 22:28
【總結(jié)】一、復(fù)習(xí)回顧?不等式解集含義;?會在數(shù)軸上表示解集;?不等式性質(zhì)及其利用;?絕對值的定義,含有絕對值的不等式的解法,當(dāng)a0時(shí),||;||.xaaxaxaxaxa??????????或二、定理:||||||||||bababa?????證明:
2024-11-10 00:54
【總結(jié)】教學(xué)內(nèi)容概要高中數(shù)學(xué)備課組教師:年級:高三學(xué)生:日期:上課時(shí)間:主課題:運(yùn)用函數(shù)的單調(diào)性與奇偶性解抽象函數(shù)不等式教學(xué)目標(biāo):1、函數(shù)單調(diào)性的定義與逆用;2、函數(shù)奇偶性的定義與性質(zhì);3、抽象函數(shù)性質(zhì)的提取,抽象函數(shù)不等式的轉(zhuǎn)換;4、會解決轉(zhuǎn)化后的不等式恒成立問題;教學(xué)重點(diǎn):1、函數(shù)的奇偶性、單調(diào)性等性質(zhì);2、利用函數(shù)單調(diào)性脫掉“
2025-06-25 05:53
【總結(jié)】不等式恒成立問題的處理恒成立問題在解題過程中大致可分為以下幾種類型:①一次函數(shù)型;②二次函數(shù)型;③其他類不等式恒成立一、一次函數(shù)型給定一次函數(shù)y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]內(nèi)恒有f(x)0,則根據(jù)函數(shù)的圖象(直線)可得上述結(jié)論等價(jià)于?????0)(0)(nfmf同理,若在[m,n]內(nèi)恒有f(x
2025-01-09 10:08
【總結(jié)】3eud教育網(wǎng)百萬教學(xué)資源,完全免費(fèi),無須注冊,天天更新!典型例題一例1解不等式:(1);(2).分析:如果多項(xiàng)式可分解為個(gè)一次式的積,則一元高次不等式(或)可用“穿根法”求解,但要注意處理好有重根的情況.解:(1)原不等式可化為把方程的三個(gè)根順次標(biāo)上數(shù)軸.然后從右上開始畫線順次經(jīng)過三個(gè)根,其解集如下圖的陰影部分.∴原不等式解集為(2)原不等式等價(jià)
2025-04-04 04:58
【總結(jié)】含絕對值不等式的解法復(fù)習(xí)回顧:1.絕對值的數(shù)學(xué)意義:??????????.0000時(shí),當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)aaaaaa的幾何意義是什么?的解集意義求出能否利用絕對值的幾何問題22)2)1.2??xx20?2是什
2024-08-14 18:19
【總結(jié)】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知
2024-11-12 01:34
【總結(jié)】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知設(shè)a,b是
2024-11-10 08:31
【總結(jié)】第一篇:構(gòu)造函數(shù),妙解不等式 構(gòu) 不等式與函數(shù)是高中數(shù)學(xué)最重要的兩部分內(nèi)容。把作為高中數(shù)學(xué)重要工具的不等式與作為高中數(shù)學(xué)主線的函數(shù)聯(lián)合起來,這樣資源的優(yōu)化配置將使學(xué)習(xí)內(nèi)容在函數(shù)思想的指導(dǎo)下得到重組...
2024-10-31 14:49
【總結(jié)】章末整合提升專題一:解不等式立,證明你的結(jié)論.例1:設(shè)f(x)=ax2+bx+c,若f(1)=72,問是否存在a、b、c∈R,使得不等式x2+12≤f(x)≤2x2+2x+32對一切實(shí)數(shù)x都成解:由f(1)=72,得a+b+c=
2024-11-12 18:09
【總結(jié)】不等關(guān)系與不等式第一課時(shí)高一數(shù)學(xué)必修五第三章《不等式》1、不等關(guān)系的普遍存在性情景引入限速40km/h的路標(biāo),指示司機(jī)在前方路段行使時(shí),應(yīng)使汽車的速度v不超過40km/里的不等關(guān)系?情景引入0<v≤40情景引入某品牌酸奶的質(zhì)量檢查規(guī)定,
2024-08-25 02:37
【總結(jié)】了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系/能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間/了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件/會用導(dǎo)數(shù)求函數(shù)的極大值、極小值/會求閉區(qū)間上函數(shù)的最大值、最小值/會利用導(dǎo)數(shù)解決某些實(shí)際問題導(dǎo)數(shù)的應(yīng)用1.函數(shù)在某區(qū)間上單調(diào)的充分條件一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)y′
2024-09-29 15:55
【總結(jié)】什么叫方程?什么是方程的解?什么叫不等式?常用的不等號有哪些?(1)x的3倍大于1;(2)y與5的差小于零;(3)x與3的和不大于6;(4)x的不小于2.(5)一個(gè)兩位數(shù)的十位數(shù)字是x,個(gè)位數(shù)字比十位數(shù)字小4,這個(gè)兩位數(shù)不小于55。當(dāng)x的值分別
2024-08-04 12:19
【總結(jié)】一元二次不等式的解法授課人:朱平2022年12月9日一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?復(fù)習(xí)回顧:a0a0的解
2025-01-07 11:53
【總結(jié)】2022年春人教版數(shù)學(xué)七年級下冊課件第九章不等式與不等式組不等式的性質(zhì)第2課時(shí)利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識管理學(xué)習(xí)指南歸類探究當(dāng)堂測評分層作業(yè)不等式的性質(zhì)第2課時(shí)利用不等式
2025-06-19 12:14