【總結(jié)】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52
【總結(jié)】第一篇:用導(dǎo)數(shù)證明不等式 用導(dǎo)數(shù)證明不等式 最基本的方法就是將不等式的的一邊移到另一邊,然后將這個式子令為一個函數(shù)f(x).對這個函數(shù)求導(dǎo),判斷這個函數(shù)這各個區(qū)間的單調(diào)性,然后證明其最大值(或者是...
2024-10-31 18:37
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關(guān)系——結(jié)論學(xué)過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關(guān)系——結(jié)論綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均
2024-11-07 02:26
【總結(jié)】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時經(jīng)常用到:(1)a2≥
2024-11-06 15:49
【總結(jié)】13屆 分類號: 單位代碼:10452畢業(yè)論文(設(shè)計)微積分在積分不等式證明中的應(yīng)用 2022年3月20日臨沂大學(xué)2022屆本科畢業(yè)論文(設(shè)計)摘要不等式是數(shù)學(xué)研究的一個基本問題,知函數(shù)積分的不等式
2025-08-22 22:57
【總結(jié)】2020/12/13洪湖二中:王愛平2020年12月2020/12/13設(shè)一元二次方程對應(yīng)的二次函數(shù)為(1)方程在區(qū)間內(nèi)有兩個不等的實(shí)根的充要條件是(2)方程在區(qū)間內(nèi)有兩個不等的實(shí)根的充要條件是(3)方程有一根大于,另一根小于的充要條件是(1)oxyk(3)
2024-11-06 21:52
【總結(jié)】第一篇:9導(dǎo)數(shù)情境下的不等式證明2 導(dǎo)數(shù)情境下的不等式證明21、已知函數(shù)g(x)=xlnx,設(shè)0 x2且x1?[-1,0],x2?[1,2]. 2、設(shè)函數(shù)f(x)=x+3bx+3cx有兩個極...
2024-10-29 11:20
【總結(jié)】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2024-11-06 13:38
【總結(jié)】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進(jìn)電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設(shè)第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均價格,然后利用不等式知識論證。解:
2024-11-06 21:53
【總結(jié)】第一篇:不等式的證明 學(xué)習(xí)資料 教學(xué)目標(biāo) (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡單的不等式; (3)能靈活根據(jù)題目選擇適當(dāng)?shù)?..
2024-10-28 23:51
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:不等式的證明 復(fù)習(xí)課:不等式的證明 教學(xué)目標(biāo) (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學(xué)歸納法的使用原理.(3).會用數(shù)學(xué)歸納法證明一些簡單問題...
2024-11-08 22:00
【總結(jié)】0不等式的若干證明方法定理的應(yīng)用Someoftheinequalityproofmethodprovetheexistenceofhigh-dimensionalimplicationfunctiontheorem專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)作者:胡元勇指
2025-05-12 01:44
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實(shí)際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53