【總結(jié)】向量及向量的基本運(yùn)算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-10 07:31
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向
2024-11-10 00:27
【總結(jié)】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向
2025-07-25 15:40
【總結(jié)】第2章均向量的統(tǒng)計(jì)推斷醫(yī)用多元統(tǒng)計(jì)分析方法為什么要進(jìn)行多元分析??對(duì)多變量資料的分析,可以分別對(duì)單個(gè)變量進(jìn)行一元分析。但這種處理方法至少有三個(gè)缺點(diǎn):①當(dāng)變量較多時(shí),重復(fù)進(jìn)行一元分析會(huì)大大增加假陽(yáng)性錯(cuò)誤;②一元分析結(jié)果不一致時(shí),難以得到一個(gè)綜合結(jié)論;②忽略了變量間的相互關(guān)系??朔鲜鋈秉c(diǎn)的做法是進(jìn)行多元分析。多元分析的精髓之一是對(duì)
2024-10-19 00:51
【總結(jié)】★向量的內(nèi)積的概念★向量的長(zhǎng)度★向量的正交性★向量空間的正交規(guī)范基的概念★向量組的正交規(guī)范化★正交陣、正交變換的概念§1.預(yù)備知識(shí):向量的內(nèi)積下頁(yè)關(guān)閉n維向量是空間三維向量的推廣,本節(jié)通過(guò)定義向量的內(nèi)積,從而引進(jìn)n維向量的度量概念:向量的長(zhǎng)度,夾角及正交。定義1
2024-09-28 08:45
【總結(jié)】設(shè)X為一n維賦范空間,其范數(shù)定義為||x||p=i=1n|xi|p1p,1≤p∞,證明以下命題:1.||x||2≤||x||1≤n|x|2;2.||x||p≤||x||1;3.||x||q≤||x||p≤n1p-1q|x|q,pq證:1.先證||x||2≤||x||1|x1|2+|x2|2≤(|x1|+|x2|)2?(|x1|2+|x
2025-06-18 14:02
【總結(jié)】?向量的概念:既有大小又有方向的量叫向量。?向量的表示方法:用一條有向線段,或用a,或用有向線段的起點(diǎn)和終點(diǎn)字母表示?零向量和單位向量:長(zhǎng)度為0的向量叫零向量,長(zhǎng)度為1個(gè)單位長(zhǎng)度的向量叫單位向量。?平行向量:方向相同或相反的向量叫平行向量,平行向量也叫做共線向量。
2024-09-01 12:08
【總結(jié)】成才之路·數(shù)學(xué)路漫漫其修遠(yuǎn)兮吾將上下而求索人教A版·選修2-1空間向量與立體幾何第三章立體幾何中的向量方法第1課時(shí)直線的方向向量和平面的法向量第三章典例探究學(xué)案2鞏固提高學(xué)案3自主預(yù)習(xí)學(xué)案1自主預(yù)習(xí)學(xué)案?1.理解直線的方向向量,平面的法向量.
2024-11-09 05:44
【總結(jié)】1直線的方向向量與平面的法向量2平面向量空間向量推廣到立體幾何問(wèn)題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開(kāi)始,我們將進(jìn)一步來(lái)體會(huì)向量這一工具在立體幾何中的應(yīng)用.前面,我們把3為了用向量的方法研究空間的線面位置
2024-10-16 19:32
【總結(jié)】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長(zhǎng)度為零的向量長(zhǎng)度為零的向量模為1的向量模為1的向量長(zhǎng)度相等且方向相反的向量長(zhǎng)
2024-11-24 17:38
【總結(jié)】第九章空間向量專題復(fù)習(xí)制作人:焦明輝一復(fù)習(xí)回顧1平行六面體法則:(1)定義:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作(2)共線向量定理:對(duì)于空間任意兩個(gè)向量a、b(b=0),a//b的充要條件是存在實(shí)數(shù)λ使a=λb.(3)推論
2024-11-09 12:28
【總結(jié)】1、向量定義復(fù)習(xí)2、向量加法的三角形法則3、向量加法的平行四邊形法則4、注:兩個(gè)向量的和仍是向量。具有大小和方向的量ABCABDC問(wèn)題:一架飛機(jī)由北京飛往香港,然后再由香港返回北京,我們把北京記作A點(diǎn),香港記作B點(diǎn),
2024-11-06 23:39
【總結(jié)】向量語(yǔ)言的轉(zhuǎn)化人教版普通高級(jí)中學(xué)教科書(shū)《數(shù)學(xué)》第一冊(cè)(下)向量語(yǔ)言的轉(zhuǎn)化向量語(yǔ)言的轉(zhuǎn)化【復(fù)習(xí)提問(wèn)】1、向量的概念2、向量共線的充要條件3、向量的數(shù)量積4、向量垂直的充要條件具有大小和方向的量叫向量共線的
2024-11-06 13:46
【總結(jié)】Fs?┓Fs?┓W=|F||s|cos?OABFS?功:為起點(diǎn),如果以,和對(duì)于兩個(gè)非零向量Oba??a??OA作??bOB的夾角與叫做向量那么AOB???ba?oAB?b?a夾角的范圍:001800???顯然
2025-07-23 05:52
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量的幾何表示和相等向量與共線向量》教學(xué)目標(biāo)?掌握向量的表示方法、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量.?通過(guò)對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別.?通過(guò)學(xué)生對(duì)向量與數(shù)量的識(shí)別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識(shí)客觀
2024-11-12 19:04