【總結】初中幾何公式匯總初中幾何公式:線1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行初中幾何公式:角
2025-06-26 08:42
【總結】初中幾何練習題一.三角形一、填空題:1、三角形的三邊為1,,9,則的取值范圍是。2、已知三角形兩邊的長分別為1和2,如果第三邊的長也是整數(shù),那么第三邊的長為。3、在△ABC中,若∠C=2(∠A+∠B),則∠C=度。4、如果△ABC的一個外角等于1500,且∠B=∠C,則∠A=
2025-03-24 12:34
【總結】初中數(shù)學概念、定義、定理、公式初中幾何概念、定理平面幾何1.兩點之間的所有連線中,線段最短。2.兩點之間線段的長度叫做這兩點之間的距離。3.經(jīng)過兩點有一條直線,并且只有一條直線。4.將一個角分成相等的兩部分的射線叫做這個角的角平分線。5.如果兩個角的和是一個直角,這兩個角叫做互為余角。簡稱互余,其中的一個角
2024-07-31 09:47
【總結】幾何圖形折疊問題【疑難點撥】1.折疊(翻折)問題常常出現(xiàn)在三角形、四邊形、圓等平面幾何問題中,其實質是軸對稱性質的應用.解題的關鍵利用軸對稱的性質找到折疊前后不變量與變量,運用三角形的全等、相似及方程等知識建立有關線段、角之間的聯(lián)系.2.折疊(翻折)意味著軸對稱,會生成相等的線段和角,這樣便于將條件集中.如果題目中有直角,則通常將條件集中于較小的直角三角形,利用勾股定理求
2024-08-14 02:53
【總結】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【總結】初中數(shù)學幾何變換之平移一、知識梳理1、平移基本要素:平移方向?平移距離??。2、基本性質:(1)對應點所連的線?段平行且相等(2)對應線段平行且相等(3)對應角相等?3、應用:?平行四邊形存在性等?二、??碱}型類型一:平移性質1、如圖,矩形OABC的兩條邊在坐標軸上,OA
2025-06-26 21:33
【總結】初中幾何公式、定理1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平
2025-06-26 21:50
【總結】初中幾何定理歸納三角形三條邊的關系定理:三角形兩邊的和大于第三邊推論:三角形兩邊的差小于第三邊三角形內角和三角形內角和定理三角形三個內角的和等于180°推論1直角三角形的兩個銳角互余推論2三角形的一個外角等于和它不相鄰的兩個內角和推論3三角形的一個外角大于任何一個和它不相鄰的內角角的平分線性質定理在角的平分線上的點到
2025-05-16 02:02
【總結】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)2、已知:如圖,P是正方形ABCD內點,∠PAD=∠PDA=150.求證:△PBC是正三角形.(初二)A13、如圖,已知四邊形ABCD、A1B1C1D1都是正方形,A2、B2、
【總結】幾何中的最值問題(講義)一、知識點睛幾何中最值問題包括:“面積最值”及“線段(和、差)最值”.求面積的最值,需要將面積表達成函數(shù),借助函數(shù)性質結合取值范圍求解;求線段及線段和、差的最值,需要借助“垂線段最短”、“兩點之間線段最短”及“三角形三邊關系”等相關定理轉化處理.一般處理方法:線段最值線段和差、周長最值幾何變換、等線段轉移
2025-03-24 12:13
【總結】初中幾何三角形五心定律及性質三角形的重心,外心,垂心,內心和旁心稱之為三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,內心定理,旁心定理的總稱重心定理三角形的三條邊的中線交于一點。該點叫做三角形的重心。三中線交于一點可用燕尾定理證明,十分簡單。(重心原是一個物理概念,對于等厚度的質量均勻的三角形薄片,其重心恰為此三角形三條中線的交點,重心因而得名)
2024-07-26 18:02
【總結】第一篇:初中數(shù)學幾何證明題 平面幾何大題幾何是豐富的變換 多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手 注意哪些角相等哪些邊相等,用標記。進而看出哪些三角形全等。平行四邊形所有的判斷方式...
2024-10-29 00:09
【總結】第一篇:初中幾何證明技巧2 初中幾何證明技巧(分類) 證明兩線段相等 。。 。 等腰三角形兩腰相等;兩腰上的高相等;兩腰上的中線相等。 平行四邊形的對角線被交點分成的兩段相等。等腰梯形兩腰...
2024-11-05 13:50
【總結】第一篇:初中數(shù)學幾何證明題 初中數(shù)學幾何證明題 分析已知、求證與圖形,探索證明的思路。 對于證明題,有三種思考方式: (1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就...
2024-10-24 21:36
【總結】第一篇:初中幾何證明 初中數(shù)學幾何解題思路 從求證出發(fā) 你就要想,這道題要求證這個,就要有.....這些條件,再看已知,有了這些條件了,噢,還差這個條件。然后就找條件來證明這個還差的條件,然后全...
2024-11-09 01:32