freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

載貨汽車的懸架系統(tǒng)結(jié)構(gòu)的設計畢業(yè)設計說明書(編輯修改稿)

2025-07-26 05:25 本頁面
 

【文章內(nèi)容簡介】 板簧與空氣彈簧聯(lián)合作用可使懸架彈性特性更接近理想,懸架的偏頻在很大載荷范圍內(nèi)近似保持不變。②縱臂式,這種方式增加了設計的靈活性,可以較好地保證懸架的縱傾特性,車輪跳動時主銷傾角的變化量也能滿足要求。③A型架式,實際上為縱臂式的變形,其側(cè)向剛度較大,可減小車身側(cè)向擺動的加速度,從而減小懸架中出現(xiàn)的附加載荷,多用于重型車的懸架。在轎車上,一般前懸采用雙橫臂,后懸采用縱臂式導向機構(gòu)。空氣懸架車身高度調(diào)節(jié)機構(gòu)是一端固定在車架、一端固定在車身上的聯(lián)動閥,當車引高度變化時,閥動作打開相應的氣路,向彈簧氣室中補充或由彈簧氣室放出空氣,達到測節(jié)車身高度的目的。汽車在正常行駛過程中,由于垂向振動或側(cè)傾,車身與車橋之間總會發(fā)生相對位移。在設計車身高度調(diào)節(jié)器時,必須采取必要的措施以防止在此類情況下車身高度調(diào)節(jié)器頻繁動作。 高度控制閥高度控制閥是空氣懸架系統(tǒng)的重要組成部分,其作用是保證車輛在任何靜載荷下與路面保持一定的高度,而且空氣彈簧的優(yōu)勢也只有在采用了高度控制閥的情況下才能充分體現(xiàn)。高度控制閥(以下稱高度閥)分為機械式和電磁式,按組成分為帶延時機構(gòu)和不帶延時機構(gòu)??紤]到目前國內(nèi)空氣懸架多采用機械式高度閥,因此針對帶延時機構(gòu)和不帶延時機構(gòu)的兩種機械式高度閥進行研究。不帶延遲機構(gòu)的高度閥工作原理:車體荷重增加時,車體下降,空氣彈簧壓縮,控制桿被推向上方,凸輪轉(zhuǎn)動帶動活塞頂開進、排氣閥,風缸中的壓縮空氣通過一段節(jié)流通道流入空氣彈簧;車架恢復到一定高度后,控制桿會返回平衡位置,此時進氣閥被關閉,壓縮空氣關斷。當車體荷重減少時,車體上升,空氣彈簧伸長,與荷重增加時情況相反,控制桿被拉下,進、排氣閥打開,空氣彈簧內(nèi)的空氣經(jīng)節(jié)流通道和活塞內(nèi)的通道排出。圖4—2 不帶延時機構(gòu)的高度閥示意圖 高度閥的主要特性參數(shù)有截止頻率一般為1Hz,不感帶mm,動作延遲時間為s,低流量為120 L/Min,標準流量為350 L/Min,排氣氣流流速為875 L/min。5 懸架導向機構(gòu)的設計 懸架導向機構(gòu)的概述空氣懸架的主要組成部分除了空氣彈簧以外,還有導向桿件、減振器、橫向穩(wěn)定器、高度控制組件及緩沖限位部件等組成。其中,導向機構(gòu)發(fā)揮著非常重要的作用。導向傳力機構(gòu)是空氣懸架中的重要部件,要承受汽車的縱向力、側(cè)向力及其力矩,因此要有一定的強度,布置方式要合理,避免運動干涉。空氣彈簧在懸架中主要承受垂直,減振、消振,如果導向機構(gòu)設計得不合理,則會增加空氣彈簧的負擔,甚至會發(fā)生扭曲、摩擦等現(xiàn)象,惡化減振效果,縮短彈簧的壽命。汽車空氣懸架導向機構(gòu)的主要作用是:①在車架(或承載式車身)與車橋(或車輪)之間傳遞力或力矩。②使車橋(或車輪)按一定軌跡相對車身或車架跳動。重型汽車空氣懸架導向機構(gòu)組成型式上主要有以下幾種:(1)鋼板彈簧混合式導向機構(gòu)(2)雙橫臂式導向機構(gòu)(3)雙縱臂式導向機構(gòu) 本設計選用雙縱臂式導向機構(gòu)圖5—1 雙縱臂四連桿導向機構(gòu)在重型汽車空氣懸架的設計中,雙縱臂式導向機構(gòu)被廣泛的采用,下縱臂一般布置在兩邊,上面兩根縱向推力桿的位置方式則可根據(jù)需要進行靈活的安排。一種是兩下縱臂同樣布置,另一種是兩根上臂合在一起,布置在中間。這兩種方式不能承受側(cè)向力,需要橫向推力桿。還可以將上面的兩根推力桿傾斜布置,構(gòu)成一個三角形架,他和下面的兩根縱向推力桿構(gòu)成一個四連桿機構(gòu)。在設計時一般都采用4X4X4設計思想:四個氣囊、四個減震器、四連桿結(jié)構(gòu)?,F(xiàn)今重型汽車上采用v型推力桿的結(jié)構(gòu)也較為流行,這種結(jié)構(gòu)在傳遞縱向力的同時也傳遞橫向力,而且機構(gòu)比較緊湊,簡潔,空間布置更合理。 橫向穩(wěn)定桿的選擇為了降低汽車的固有振動頻率以改善行駛平順性,現(xiàn)在轎車懸架的垂直剛度值較小,從而使汽車的側(cè)傾角剛度值也較小,結(jié)果是汽車轉(zhuǎn)彎側(cè)傾嚴重,影響了汽車的行駛穩(wěn)定性。為此,現(xiàn)代汽車大多都裝有橫向穩(wěn)定桿來加大懸架的側(cè)傾角剛度以改善汽車的行駛穩(wěn)定性。橫向穩(wěn)定桿帶來的好處除了可以增加懸架的側(cè)傾角剛度,從而減小汽車轉(zhuǎn)向時車身的側(cè)傾角外,適當?shù)剡x擇前、后懸架的側(cè)傾角剛度比值,也有助于使汽車獲得所需的不足轉(zhuǎn)向特性。通過,在汽車的前、后懸架中都裝有橫向穩(wěn)定桿,或者只在前懸架中安裝。若只在后懸架中安裝,則會使汽車趨于過多轉(zhuǎn)向。橫向穩(wěn)定桿帶來的不利因素有:當汽車在坑洼不平的路面行駛時,左右輪之間有垂向相對位移,由于橫向穩(wěn)定桿的作用,增加了車輪處的垂向剛度,會影響汽車的平順性。在有些懸架中,橫向穩(wěn)定桿還兼起部分導向桿系的作用,其余情況下則設計時應當注意避免與懸架的導向桿系發(fā)生運動干涉。為了緩沖隔振和降低噪聲,橫向穩(wěn)定桿與車輪及車架的連接處均有橡膠支承。本次設計選取DND1250CWB459P的前后橫向穩(wěn)定桿的形狀如下圖所示圖5—2 橫向穩(wěn)定桿的外形圖 側(cè)頃力臂的計算方法現(xiàn)在來討論一下側(cè)頃力臂的計算方法, 雙縱臂式非獨立前懸架布置方式如圖5—3所示圖5—3 縱臂式非獨立懸架布置形式在這種懸架中,縱向推力桿只傳遞輪胎到車身的縱向力。當車身受到側(cè)頃力作用時,地面通過兩根斜向布置的導向桿的約束反力的臺力Y來平衡。Y的作用點0在通過車軸的橫向垂直平面上的投影0m即側(cè)頃力矩中心。單縱臂式懸架的側(cè)傾力矩中心與雙縱臂類似,因篇幅有限,本文不再詳細描述。整車側(cè)傾力臂h的計算為: (51)式中懸掛質(zhì)量重心高度; 整車側(cè)傾力矩中心高度。根據(jù)質(zhì)心公式,簧載質(zhì)量質(zhì)心高度為: (52)式中:G為滿載整車質(zhì)量,G=25000kg;為非簧載總質(zhì)量,=2500kg;為車輪靜力半徑,=540mm;為滿載時整車重心高度,=1800mm。將上述參數(shù)代入公式可得=1940mm。 (53)式中 ,—分別為車身在前后軸處的側(cè)傾力矩中心高度;a—整車懸掛質(zhì)量重心到前軸的距離;l—軸距;根據(jù)載荷分配關系,質(zhì)心距前軸距離為: (54)根據(jù)上一章節(jié)計算可知前軸簧載質(zhì)量=5870kg =11740kg;為前軸與中軸間距,=3800mm;為中軸與后軸間距,=1380mm。將參數(shù)代入上面(54)的公式,可得a=2990mm。根據(jù)計算后得知,為前懸架簧載質(zhì)心到側(cè)傾中心的距離,=650mm;為后懸架簧載質(zhì)心到側(cè)傾中心側(cè)傾距離,=680mm:軸距l(xiāng)=4615+1300mm,及(54)所得a=2990mm,一起代入(53)得到=665mm。最后得出整車側(cè)傾力臂=1940665=1275mm。 穩(wěn)定桿的角剛度計算橫向穩(wěn)定桿的機構(gòu)如圖54所示。根據(jù)材料力學原理可求出穩(wěn)定桿的角剛度。根據(jù)材料力學原理可求出穩(wěn)定桿的角剛度由于連接點橡膠件變形,穩(wěn)定桿側(cè)傾角剛度會減小15%30%。 (55)式中:E為材料的彈性模量,E=; I為穩(wěn)定桿的截面慣性矩的慣性距,;根據(jù)選取DND1250CWB459P的前橫向穩(wěn)定桿直徑d=60mm,其余參數(shù)如下圖54所示圖5—4 橫向穩(wěn)定桿計算用簡圖將參數(shù)代入公式(55),可得前橫向穩(wěn)定桿角剛度為,后橫向穩(wěn)定桿角剛度為。整車側(cè)傾角剛度為前后懸架剛度之和: (56)式中:,為前、后懸架空氣彈簧跨度;,為前、后橫向穩(wěn)定桿角剛度,即=,=。將參數(shù)代入公式(56),可得= 懸架的側(cè)傾角校核懸架側(cè)傾角剛度系數(shù)指簧上質(zhì)量產(chǎn)生單位側(cè)傾角時,懸架給車身的彈性恢復力矩。它對簧上質(zhì)量的側(cè)傾角有影響。側(cè)傾角過大或過小都不好。乘坐側(cè)傾角剛度過小而側(cè)傾角過大的汽車,乘員缺乏舒適感和安全感。側(cè)傾角剛度過大而側(cè)傾角過小的汽車又缺乏汽車發(fā)現(xiàn)側(cè)翻的感覺,同時使輪胎側(cè)偏角增大。如果發(fā)生在后輪,會使汽車增加了過多轉(zhuǎn)向的可能。對整車側(cè)傾角進行簡單校核,在側(cè)傾角極小時,根據(jù)繞側(cè)軸的力矩平和條件推出側(cè)傾角為 (57)式中:μ為向心加速度,;為簧載質(zhì)量質(zhì)心高度;為簧載質(zhì)量;h為簧載質(zhì)量側(cè)傾力臂;為整車側(cè)傾角剛度。將本章各節(jié)所求的參數(shù)代入公式(57),即簧載質(zhì)量質(zhì)心高度=1940mm;h為簧載質(zhì)量側(cè)傾力臂h=1275mm;整車側(cè)傾角剛度=,可得 = ,176。,貨車車身側(cè)傾角不要超過。車身側(cè)傾角在2~5。的范圍內(nèi),側(cè)傾角剛度滿足設計要求。6 減振器機構(gòu)類型及主要參數(shù)的選擇計算 分類 懸架中用得最多的減振器是內(nèi)部充有液體的液力式減振器。汽車車身和車輪振動時,減振器內(nèi)的液體在流經(jīng)阻尼孔時的摩擦和液體的粘性摩擦形成了振動阻力,將振動能量轉(zhuǎn)變?yōu)闊崮埽⑸l(fā)到周圍空氣中去,達到迅速衰減振動的目的。如果能量的耗散僅僅是在壓縮行程或者是在伸張行程進行,則把這種減振器稱之為單向作用式減振器,反之稱之為雙向作用式減振器。后者因減振作用比前者好而得到廣泛應用。根據(jù)結(jié)構(gòu)形式不同,減振器分為搖臂式和筒式兩種。雖然搖臂式減振器能夠在比較大的工作壓力(10—20MPa)條件下工作,但由于它的工作特性受活塞磨損和工作溫度變化的影響大而遭淘汰?!?MPa,但是因為工作性能穩(wěn)定而在現(xiàn)代汽車上得到廣泛應用。筒式減振器又分為單筒式、雙筒式和充氣筒式三種。雙筒充氣液力減振器具有工作性能穩(wěn)定、干摩擦阻力小、噪聲低、總長度短等優(yōu)點,在轎車上得到越來越多的應用。設計減振器時應當滿足的基本要求是,在使用期間保證汽車行駛平順性的性能穩(wěn)定。現(xiàn)代汽車大多都是采用筒式減振器,當車架與車軸相對運動時,減振器內(nèi)的油液與孔壁間的摩擦形成了對車身振動的阻力,這種阻力工程上稱為阻尼力。阻尼力會將車身的振動能轉(zhuǎn)化為熱能,被油液和殼體所吸收。人們?yōu)榱烁玫貙崿F(xiàn)轎車的行駛平穩(wěn)性和安全性,將阻尼系數(shù)不固定在某一數(shù)值上,而是隨汽車運行的狀態(tài)而變化,使懸掛性能總是處在最優(yōu)的狀態(tài)附近。因此,有些汽車的減振器是可調(diào)式的可根據(jù)傳感器信號自動選擇。 (1) 在壓縮行程(車橋和車架相互靠近),減振器阻尼力較小,以便充分發(fā)揮彈性元件的彈性作用,緩和沖擊。這時,彈性元件起主要作用。 (2) 在懸架伸張行程中(車橋和車架相互遠離),減振器阻尼力應大,迅速減振。 (3) 當車橋(或車輪)與車橋間的相對速度過大時,要求減振器能自動加大液流量,使阻尼力始終保持在一定限度之內(nèi),以避免承受過大的沖擊載荷。 雙向作用筒式減振器工作原理說明。在壓縮行程時,指汽車車輪移近車身,減振器受壓縮,此時減振器內(nèi)活塞向下移動。活塞下腔室的容積減少,油壓升高,油液流經(jīng)流通閥流到活塞上面的腔室(上腔)。上腔被活塞桿占去了一部分空間,因而上腔增加的容積小于下腔減小的容積,一部分油液于是就推開壓縮閥,流回貯油缸。這些閥對油的節(jié)約形成懸架受壓縮運動的阻尼力。減振器在伸張行程時,車輪相當于遠離車身,減振器受拉伸。這時減振器的活塞向上移動?;钊锨挥蛪荷撸魍ㄩy關閉,上腔內(nèi)的油液推開伸張閥流入下腔。由于活塞桿的存在,自上腔流來的油液不足以充滿下腔增加的容積,主使下腔產(chǎn)生一真空度,這時儲油缸中的油液推開補償閥流進下腔進行補充。由于這些閥的節(jié)流作用對懸架在伸張運動時起到阻尼作用。 由于伸張閥彈簧的剛度和預緊力設計的大于壓縮閥,在同樣壓力作用下,伸張閥及相應的常通縫隙的通道載面積總和小于壓縮閥及相應常通縫隙通道截面積總和。這使得減振器的伸張行程產(chǎn)生的阻尼力大于壓縮行程的阻尼力,達到迅速減振的要求。本次設計選取雙筒式液力減振器。圖6—1 雙筒式液力減振器1—活塞 2—工作缸筒 3—貯油缸筒 4—底閥座 5—導向座 6—回流孔活塞桿 7—油封 8—防塵罩 9—活塞桿 主要參數(shù)的選擇計算減振器在卸荷閥打開前,減振器中的阻力F與減振器振動速度之間有如下關系 (6-1)式中,為減振器阻尼系數(shù)。圖6—2b示出減振器的阻力-速度特性圖。該圖具有如下特點:阻力-速度特性由四段近似直線線段組成,其中壓縮行程和伸張行程的阻力-速度特性各占兩段;各段特性線的斜率是減振器的阻尼系數(shù),所以減振器有四個阻尼系數(shù)。在沒有特別指明時,減振器的阻尼系數(shù)是指卸荷閥開啟前的阻尼系數(shù)而言。通常壓縮行程的阻尼系數(shù)與伸張行程的阻尼系數(shù)不等。圖6—2 減振器的特性a)阻力一位移特性b)阻力一速度特性汽車懸架有阻尼以后,簧上質(zhì)量的振動是周期衰減振動,用相對阻尼系數(shù)的大小來評定振動衰減的快慢程度。的表達式為 (6-2)式中,c為懸架系統(tǒng)垂直剛度;為簧上質(zhì)量。式(6-2)表明,相對阻尼系數(shù)的物理意義是:減振器的阻尼作用在與不同剛度c和不同簧上質(zhì)量的懸架系統(tǒng)匹配時,會產(chǎn)生不同的阻尼效果。值大,振動能迅速衰減,同時又能將較大的路面沖擊力傳到車身;值小則反之。通常情況下,將壓縮行程時的相對阻尼系數(shù)取得小些,伸張行程時的相對阻尼系數(shù)取得大些。兩者之間保持 =(~) 的關系。設計時,先選取與的平均值。對于無內(nèi)摩擦的彈性元件懸架,?。健粚τ谟袃?nèi)摩擦的彈性元件懸架,值取小些。對于行駛路面條件較差的汽車,值應取大些,一般?。?;為避免懸架碰撞車架,取=。減振器阻尼系數(shù)。因懸架系統(tǒng)固有振動頻率,所以理論上。實際上應根據(jù)減振器的布置特點確定減振器的阻尼系數(shù)。例如,當減振器如圖6-3a安裝時,減振器阻尼系數(shù)用下式計算圖6—3 減振器安裝位置 (6-3)式中,n為雙橫臂懸架的下臂長;a為減振器在下橫臂上的連接點到下橫臂在車身上的鉸接之間的距離。減振器如圖6-3b所示安裝時,減振器的阻尼系數(shù)占用下式計算 (6-4)式中,a為減振器軸線與鉛垂線之間的夾角。減振器如圖6-3c所示安裝時,減振器的阻尼系數(shù)用下式計算
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1