freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

帕薩特b5空調(diào)制冷系統(tǒng)及維修畢業(yè)論文(編輯修改稿)

2025-07-25 14:20 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 何分析在網(wǎng)狀結(jié)構(gòu)的剛度矩陣會(huì)導(dǎo)致一個(gè)戲劇性的變化,這與再分析技術(shù)不太相關(guān)。3. 擬議的方法我們把注意力放在這個(gè)文件中的工程問題,標(biāo)量二階偏微分方程式(pde): 許多工程技術(shù)問題,如熱,流體靜磁等問題,可能簡(jiǎn)化為上述公式。作為一個(gè)說明性例子,考慮散熱問題的二維模塊Ω如圖2所示。圖2二維熱座裝配熱量q從一個(gè)線圈置于下方位置列為Ωcoil。半導(dǎo)體裝置位于Ωdevice。這兩個(gè)地方都屬于Ω,有相同的材料屬性,其余Ω將在后面討論。特別令人感興趣的是數(shù)量,加權(quán)溫度Tdevice內(nèi)Ωdevice(見圖2)。一個(gè)時(shí)段,認(rèn)定為Ωslot縮進(jìn)如圖2,會(huì)受到抑制,其對(duì)Tdevice將予以研究。邊界的時(shí)段稱為Γslot其余的界線將稱為Γ。邊界溫度Γ假定為零。兩種可能的邊界條件Γslot被認(rèn)為是:(a)固定熱源,即(kt)?n=q,(b)有一定溫度,即T=Tslot。兩種情況會(huì)導(dǎo)致兩種不同幾何分析引起的誤差的結(jié)果。設(shè)T(x,y)是未知的溫度場(chǎng)和K導(dǎo)熱。然后,散熱問題可以通過泊松方程式表示:其中H(x,y)是一些加權(quán)內(nèi)核。現(xiàn)在考慮的問題是幾何分析簡(jiǎn)化的插槽是簡(jiǎn)化之前分析,如圖3所示。圖3defeatured二維熱傳導(dǎo)裝配模塊現(xiàn)在有一個(gè)不同的邊值問題,不同領(lǐng)域t(x,y):觀察到的插槽的邊界條件為t(x,y)已經(jīng)消失了,因?yàn)椴垡呀?jīng)不存在了(關(guān)鍵性變化)!解決的問題是:設(shè)定tdevice和t(x,y)的值,估計(jì)Tdevice。這是一個(gè)較難的問題,是我們尚未解決的。在這篇文章中,我們將從上限和下限分析Tdevice。這些方向是明確被俘引理4和6。至于其余的這一節(jié),我們將發(fā)展基本概念和理論,建立這兩個(gè)引理。值得注意的是,只要它不重疊,定位槽與相關(guān)的裝置或熱源沒有任何限制。上下界的Tdevice將取決于它們的相對(duì)位置。我們需要的第一個(gè)概念是,伴隨矩陣公式表達(dá)法。應(yīng)用伴隨矩陣論點(diǎn)的微分積分方程,包括其應(yīng)用的控制理論,形狀優(yōu)化,拓?fù)鋬?yōu)化等。我們對(duì)這一概念歸納如下。相關(guān)的問題都可以定義為一個(gè)伴隨矩陣的問題,控制伴隨矩陣t_(x,y),必須符合下列公式計(jì)算〔23〕:伴隨場(chǎng)t_(x,y)基本上是一個(gè)預(yù)定量,即加權(quán)裝置溫度控制的應(yīng)用熱源??梢杂^察到,伴隨問題的解決是復(fù)雜的原始問題??刂品匠淌窍嗤摹_@些問題就是所謂的自身伴隨矩陣。大部分工程技術(shù)問題的實(shí)際利益,是自身伴隨矩陣,就很容易計(jì)算伴隨矩陣。另一方面,在幾何分析問題中,伴隨矩陣發(fā)揮著關(guān)鍵作用。表現(xiàn)為以下引理綜述:,即(Tdevicetdevice)可以歸納為以下的邊界積分比幾何分析插槽:在上述引理中有兩點(diǎn)值得注意:積分只牽涉到邊界гslot。這是令人鼓舞的。或許,處理剛剛過去的被簡(jiǎn)化信息特點(diǎn)可以計(jì)算誤差。右側(cè)牽涉到的未知區(qū)域T(x,y)的全功能的問題。特別是第一周期涉及的差異,在正常的梯度,即涉及[k(Tt)] ?n。這是一個(gè)已知數(shù)量邊界條件[kt]?n所指定的時(shí)段,未知狄里克萊條件作出規(guī)定[kt]?n可以評(píng)估。在另一方面,在第二個(gè)周期內(nèi)涉及的差異,在這兩個(gè)領(lǐng)域,即T管。 因?yàn)閠可以評(píng)價(jià),這是一個(gè)已知數(shù)量邊界條件T指定的時(shí)段。因此。、差額(tdevicetdevice)不等式然而,伴隨矩陣技術(shù)不能完全消除未知區(qū)域T(x,y)。為了消除T(x,y)我們把重點(diǎn)轉(zhuǎn)向單調(diào)分析。單調(diào)性分析是由數(shù)學(xué)家在19世紀(jì)和20世紀(jì)前建立的各種邊值問題。例如,一個(gè)單調(diào)定理:添加幾何約束到一個(gè)結(jié)構(gòu)性問題,是指在位移(某些)邊界不減少。觀察發(fā)現(xiàn),上述理論提供了一個(gè)定性的措施以解決邊值問題。后來,工程師利用之前的“計(jì)算機(jī)時(shí)代”上限或下限同樣的定理,解決了具有挑戰(zhàn)性的問題。當(dāng)然,隨著計(jì)算機(jī)時(shí)代的到來,這些相當(dāng)復(fù)雜的直接求解方法已經(jīng)不為人所用。但是,在當(dāng)前的幾何分析,我們證明這些定理采取更為有力的作用,尤其應(yīng)當(dāng)配合使用伴隨理論。我們現(xiàn)在利用一些單調(diào)定理,以消除上述引理T(x,y)。遵守先前規(guī)定,右邊是區(qū)別已知和未知的領(lǐng)域,即T(x,y)t(x,y)。因此,讓我們?cè)诮缍ㄒ粋€(gè)領(lǐng)域E(x,y)在區(qū)域?yàn)?e(x,y)=t(x,y)t(x,y)。據(jù)悉,T(x,y)和T(x,y)都是明確的界定,所以是e(x,y)。事實(shí)上,從公式(1)和(3),我們可以推斷,e(x,y)的正式滿足邊值問題:解決上述問題就能解決所有問題。但是,如果我們能計(jì)算區(qū)域e(x,y)與正常的坡度超過插槽,以有效的方式,然后(Tdevicetdevice),就評(píng)價(jià)表示e(X,Y)的效率,我們現(xiàn)在考慮在上述方程兩種可能的情況如(a)及(b)。例(a)邊界條件較第一插槽,審議本案時(shí)槽原本指定一個(gè)邊界條件。為了估算e(x,y),考慮以下問題:因?yàn)橹蝗Q于縫隙,不討論域,以上問題計(jì)算較簡(jiǎn)單。經(jīng)典邊界積分/邊界元方法可以引用。關(guān)鍵是計(jì)算機(jī)領(lǐng)域e1(x,y)和未知領(lǐng)域的e(x,y)。這兩個(gè)領(lǐng)域e1(x,y)和e(x,y)滿足以下單調(diào)關(guān)系:把它們綜合在一起,我們有以下結(jié)論引理。,當(dāng)插槽具有邊界條件,東至以下限額的計(jì)算,只要求:(1)原始及伴隨場(chǎng)T和隔熱與幾何分析域(2)解決e1的一項(xiàng)問題涉及插槽:觀察到兩個(gè)方向的右側(cè),雙方都是獨(dú)立的未知區(qū)域T(x,y)。例(b) 插槽Dirichlet邊界條件我們假定插槽都維持在定溫Tslot。考慮任何領(lǐng)域,即包含域和插槽。界定一個(gè)區(qū)域e(x,y)在滿足:現(xiàn)在建立一個(gè)結(jié)果與e(x,y)及e(x,y)。注意到,公式(7)的計(jì)算較為簡(jiǎn)單。這是我們最終要的結(jié)果。 未知的裝置溫度Tdevice,當(dāng)插槽有Dirichlet邊界條件,東至以下限額的計(jì)算,只要求:(1)原始及伴隨場(chǎng)T和隔熱與幾何分析。(2) 圍繞插槽解決失敗了的邊界問題,:再次觀察這兩個(gè)方向都是獨(dú)立的未知領(lǐng)域T(x,y)。4. 數(shù)值例子說明我們的理論發(fā)展,在上一節(jié)中,通過數(shù)值例子。設(shè)k = 5W/m?C, Q = 10 W/m3 and H = 。表1:結(jié)果表表1給出了不同時(shí)段的邊界條件。第一裝置溫度欄的共同溫度為所有幾何分析模式(這不取決于插槽邊界條件及插槽幾何分析)。最后一欄是實(shí)際的裝置溫度所得的全功能模式(前幾何分析),是列在這里比較前列的。在全部例子中,我們可以看到最后一欄則是介于第二和第三列。T Tdevice T對(duì)于絕緣插槽來說,Dirichlet邊界條件指出,觀察到的各種預(yù)測(cè)為零。不同之處在于這個(gè)事實(shí):在第一個(gè)例子,一個(gè)零Neumann邊界條件的時(shí)段,導(dǎo)致一個(gè)自我平衡的特點(diǎn),因此,其對(duì)裝置基本沒什么影響。另一方面,有Dirichlet邊界條件的插槽結(jié)果在一個(gè)非自我平衡的特點(diǎn),其缺失可能導(dǎo)致器件溫度的大變化在。不過,固定非零槽溫度預(yù)測(cè)范圍為20度到0度。這可以歸因于插槽溫度接近于裝置的溫度,因此,將其刪除少了影響。的確,人們不難計(jì)算上限和下限的不同Dirichlet條件插槽。圖4說明了變化的實(shí)際裝置的溫度和計(jì)算式。預(yù)測(cè)的上限和下限的實(shí)際溫度裝置表明理論是正確的。另外,跟預(yù)期結(jié)果一樣,限制槽溫度大約等于裝置的溫度。5. 快速分析設(shè)計(jì)的情景我們認(rèn)為對(duì)所提出的理論分析什么如果的設(shè)計(jì)方案,現(xiàn)在有著廣泛的影響。研究顯示設(shè)計(jì)如圖5,現(xiàn)在由兩個(gè)具有單一熱量能源的器件。如預(yù)期結(jié)果兩設(shè)備將不會(huì)有相同的平均溫度。由于其相對(duì)靠近熱源,該裝置的左邊將處在一個(gè)較高的溫度。圖4估計(jì)式versus插槽溫度圖圖5雙熱器座圖6正確特征可能性位置為了消除這種不平衡狀況,加上一個(gè)小孔,固定直徑。五個(gè)可能的位置見圖6。兩者的平均溫度在這兩個(gè)地區(qū)最低。強(qiáng)制進(jìn)行有限元分析每個(gè)配置。這是一個(gè)耗時(shí)的過程。另一種方法是把該孔作為一個(gè)特征,并研究其影響,作為后處理步驟。換言之,這是一個(gè)特殊的“幾何分析”例子,而擬議的方法同樣適用于這種情況。我們可以解決原始和伴隨矩陣的問題,原來的配置(無孔)和使用的理論發(fā)展在前兩節(jié)學(xué)習(xí)效果加孔在每個(gè)位置是我們的目標(biāo)。目的是在平均溫度兩個(gè)裝置最大限度的差異。表2概括了利用這個(gè)理論和實(shí)際的價(jià)值。從上表可以看到,位置W是最佳地點(diǎn),因?yàn)樗凶畹途殿A(yù)期目標(biāo)的功能。附錄II 外文文獻(xiàn)原文A formal theory for estimating defeaturing induced engineering analysis errorsSankara Hari Gopalakrishnan, Krishnan SureshDepartment of Mechanical Engineering, University of Wisconsin, Madison, WI 53706, United StatesReceived 13 January 2006。 accepted 30 September 2006AbstractDefeaturing is a popular CAD/CAE simplification technique that suppresses ‘small or irrelevant features’ within a CAD model to speedup downstream processes such as finite element analysis. Unfortunately, defeaturing inevitably leads to analysis errors that are not easily quantifiable within the current theoretical framework.In this paper, we provide a rigorous theory for swiftly puting such defeaturing induced engineering analysis errors. In particular, we focus on problems where the features being suppressed are cutouts of arbitrary shape and size within the body. The proposed theory exploits the adjoint formulation of boundary value problems to arrive at strict bounds on defeaturing induced analysis errors. The theory is illustrated through numerical examples.Keywords: Defeaturing。 Engineering analysis。 Error estimation。 CAD/CAE1. IntroductionMechanical artifacts typically contain numerous geometric features. However, not all features are critical during engineering analysis. Irrelevant features are often suppressed or ‘defeatured’, prior to analysis, leading to increased automation and putational speedup.For example, consider a brake rotor illustrated in Fig. 1(a). The rotor contains over 50 distinct ‘features’, but not all of these are relevant during, say, a thermal analysis. A defeatured brake rotor is illustrated in Fig. 1(b). While the finite element analysis of the fullfeatured model in Fig. 1(a) required over 150,000 degrees of freedom, the defeatured model in Fig. 1(b) required 25,000 DOF, leading to a significant putational speedup.Fig. 1. (a) A brake rotor and (b) its defeatured version.Besides an improvement in speed, there is usually an increased level of automation in that it is easier to automate finite element mesh generation of a defeatured ponent [1,2]. Memory requirements also decrease, while condition number of the discretized system improves。the latter plays an important role in iterative linear system solvers [3].Defeaturing, however, invariably results in an unknown ‘perturbation’ of the underlying field. The perturbation may be ‘small and localized’ or ‘large and spreadout’, depending on various factors. Fo
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1