【總結】正弦定理及其變形RCcBbAa2sinsinsin???邊角分離ARasin2?BRbsin2?CRcsin2?AbcBacCabSABCsin21sin21sin21????BAbatantan22?
2025-08-16 01:16
【總結】正弦定理、余弦定理的綜合應用正余弦定理的應用1、(1)在△ABC中,已知a,b,c分別為內角A,B,C的對邊,若b=2a,B=A+600,則A=______(2)在△ABC中,若B=300,AB=32,AC=
2025-08-04 16:35
【總結】......正弦定理、余弦定理練習題年級__________班級_________學號_________姓名__________分數(shù)____一、選擇題(共20題,題分合計100分)△ABC中,sinA
2025-03-25 04:59
【總結】正弦、余弦定理解斜三角形知識網(wǎng)絡1.三角形基本公式:(1)內角和定理:A+B+C=180°,sin(A+B)=sinC,cos(A+B)=-cosC,cos=sin,sin=cos(2)面積公式:S=absinC=bcsinA=casinBS=pr=(其中p=,r為內切圓半徑)(3)射影定理:a=bcosC+ccosB;b=
2025-03-24 07:02
【總結】12直角三角形中的邊角關系:CBAabc1、角的關系:A+B+C=180°A+B=C=90°2、邊的關系:a2+b2=c23、邊角關系:sinA=—=cosBsinB=—=cosAacbc復習3CBAabc
2025-01-06 16:31
【總結】高考風向 、余弦定理的推導;、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導公式等知識點進行綜合考查.學習要領 、余弦定理的意義和作用;、余弦定理實現(xiàn)三角形中的邊角轉換,和三角函數(shù)性質相結合.基礎知識梳理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(
2025-06-28 04:30
【總結】北師大版高中數(shù)學必修五正弦定理、余弦定理的應用遼寧省北票市保國學校叢日艷教學目的:1進一步熟悉正、余弦定理內容;2能夠應用正、余弦定理進行邊角關系的相互轉化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學重點:利用正、余弦定理進行邊角互換時的轉化方向教學難點:三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-06-28 04:35
【總結】教學基本信息課題余弦定理是否屬于地方課程或校本課程否學科數(shù)學學段:高中年級高一相關領域平面向量教材書名:普通高中課程標準實驗教科書B版必修5,出版社:人民教育出版社出版日期:2014年6月指導思想與理論依據(jù)數(shù)學學習按知識分類有概念學習、規(guī)則學習和問題解決學習,相應的課堂教學有概念教學、規(guī)則教學和問題解決學習。數(shù)
2025-04-16 22:52
【總結】例3AB是底部B不可到達的一個建筑物,A為建筑物的最高點,設計一種測量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達的,所以不能直接測量出建筑物的高。由解直角三角形的知識,只要能測出一點C到建筑物的頂部A的距離CA,并測出由點C觀察A的仰角,就可以計算出建筑物的高。所以應該設法借助解三角形的知識測出CA的長。)
2025-08-16 01:09
【總結】第一課時壓力壓強?要點考點聚焦?課前熱身?典型例題解析?方法小結?課時訓練第五章壓強和浮力要點考點聚焦本課時涉及的考點有:壓力的理解、壓強及影響壓強大小的因素、增大和減小壓強的方法.從中考命題看,上述考點常以填空、選擇和計算題型出現(xiàn).其中壓力的方向
2025-10-28 23:52
【總結】余弦定理及其應用【教學目標】【知識與技能目標】(1)了解并掌握余弦定理及其推導過程.(2)會利用余弦定理來求解簡單的斜三角形中有關邊、角方面的問題.(3)能利用計算器進行簡單的計算(反三角).【過程與能力目標】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應用的認識.(2)通過引導、啟發(fā)、誘導學生發(fā)現(xiàn)并且順利推導出余弦定理的過程,
2025-06-19 00:57
【總結】你來觀察上圖的情景中,蘋果、鉛球的運動有什么共同的特點?為什么物體要落回地面上呢?為什么高處的水要往低處流?重力重力教學目的:1、知道什么是重力2、探究重力的大小和重力的方向3、了解重力勢能重點、難點:1、探究影響物體所受重力大小的因素2、判斷重力的方向一
2025-11-01 09:09
2025-08-16 01:47
【總結】人教版數(shù)學必修5§溫州市五十一中學俞美丹一、教學內容解析余弦定理是繼正弦定理教學之后又一關于三角形的邊角關系準確量化的一個重要定理。在初中,學生已經(jīng)學習了相關邊角關系的定性的結果,就是“在任意三角形中大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,則這兩個三角形全等”。同時學生在初中階段能解決直角三角形中一些邊角之間的定量
2025-06-19 01:03
【總結】數(shù)學:《正弦定理與余弦定理》教案(新人教版必修5)(原創(chuàng))余弦定理一、教材依據(jù):人民教育出版社(A版)數(shù)學必修5第一章第二節(jié)二、設計思想:1、教材分析:余弦定理是初中“勾股定理”內容的直接延拓,是解三角形這一章知識的一個重要定理,揭示了任意三角形邊角之間的關系,是解三角形的重要工具,余弦定理與平面幾何知識、向量、三角形有著密切的聯(lián)系。因此,做好“余弦定理”的教學,不僅能復習