【總結(jié)】勾股定理逆定理鐵山學校張宏財?一、教材分析?二、教學過程?三、說教法、學法與教學手段?四、教學反思一、教材分析?(一)本節(jié)課在教材的地位與作用?本節(jié)課是勾股定理的逆定理。它是在學過勾股定理的基礎上進行的。教科書以古埃及人的作圖為出發(fā)點,讓學生畫出一些兩邊的平方和
2024-11-22 01:51
【總結(jié)】第一篇:勾股定理應用說課稿 聯(lián)校教研活動《勾股定理應用》說課稿 旦馬中學沈俊山 一.教材內(nèi)容分析: 本課時是人教版版八年級(下)§18《勾股定理》部分的“勾股定理”第二課時內(nèi)容。本節(jié)課是應用結(jié)...
2024-11-04 18:18
【總結(jié)】勾股定理第2課時勾股定理的實際應用第2課時勾股定理的實際應用知識目標1.在理解直角三角形三邊關系的基礎上,通過對實際問題的分析,能用勾股定理解決與直角三角形三邊有關的實際問題.2.利用勾股定理,結(jié)合“兩點之間,線段最短”,會求平面上兩點之間的最短距離.3.在掌握立體圖形展開圖的前提下,利用勾股定理求立體圖
2025-06-17 01:48
【總結(jié)】第一篇:勾股定理的應用說課稿 《勾股定理的應用》說課稿 : 本課是華師大版八年級(上)數(shù)學第14章第二節(jié)內(nèi)容,,,通過實際分析,使學生獲得較為直觀的印象,通過聯(lián)系和比較,,制定教學目標如下:1....
2024-11-04 18:06
【總結(jié)】第一章勾股定理勾股定理的應用情境引入短距離.(重點).(重點,難點)學習目標在A點的小狗,為了盡快吃到B點的香腸,它選擇AB路線,而不選擇ACB路線,難道小狗也懂數(shù)學?CBAAC+CBAB(兩點之間線段最短)情境引入思考:在立體圖
2024-12-28 01:48
【總結(jié)】121教學模式數(shù)學八年級科目_________________________潘明明年級_________________________教師____________課前1分鐘交通安全教育數(shù)學
2025-04-16 23:55
【總結(jié)】第一篇:說課稿——勾股定理的應用 勾股定理的應用 ——螞蟻怎么走最快(初中數(shù)學八年級) 學情分析:在本節(jié)內(nèi)容之前,學生已經(jīng)準確的理解了勾股定理及其逆定理的內(nèi)容并能運用它們解決一些數(shù)學問題。同時也...
2024-11-05 03:15
【總結(jié)】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學習已深有體驗。首先,勾股定理是數(shù)形結(jié)合的最典型的代表。其次,了解勾股定理歷史的同學知道,正是由于勾股定理的發(fā)現(xiàn),導致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學的第一次危機。勾股定理中的公式是第一個不定方程,有許許多多的數(shù)滿足這個方程,也是有完整解答的最早的不定方程,由此由它引導出各式各樣的不
2024-11-06 19:33
【總結(jié)】第2課時 勾股定理的實際應用實際生活中的與直角三角形有關的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-14 05:26
【總結(jié)】第2課時勾股定理在實際生活中的應用通過預習利用勾股定理解決生活中的實際問題.知識點:勾股定理的應用【思路點撥】注重數(shù)形結(jié)合的思想,把實際問題轉(zhuǎn)化為數(shù)學問題來解決.例1如圖所示,一個圓柱形鐵桶的底面半徑是12cm,高為10cm,若在其中隱藏一細鐵棒,問鐵棒的長度最長不能超過多長?解:由題意可知:底面圓的半徑為12
2025-06-12 12:11
【總結(jié)】勾股定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第2課時勾股定理在實際生活中的應用學習目標1.會運用勾股定理求線段長及解決簡單的實際問題.(重點),利用勾股定理建立已知邊與未知邊長度之間的聯(lián)系
【總結(jié)】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個結(jié),然后,用釘子將第1個與第13個結(jié)釘在一起,拉緊繩子,再在第4個和第8個結(jié)處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結(jié)】勾股定理的逆定理人教版數(shù)學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】第2課時勾股定理的逆定理的應用滬科版·八年級數(shù)學下冊狀元成才路狀元成才路新課導入例2已知:在△ABC中,三條邊長分別為a=n2–1,b=2n,c=n2+1(n>1).求證:△ABC為直角三角形.狀元成才路狀元成才路新課探究
2025-03-12 12:44
【總結(jié)】第一篇:勾股定理的證明及應用 勾股定理的證明及應用 【重點】: 學習勾股定理的文化背景,欣賞歷史上經(jīng)典的勾股定理證明方法,體會其蘊含的創(chuàng)新思維,初步運用勾股定理分析處理具體問題 【難點】: ...
2024-11-04 17:50