freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

傅立葉變換的原理、意義和應用(編輯修改稿)

2025-07-19 04:25 本頁面
 

【文章內容簡介】 烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區(qū)域,對應的頻率值很低;而對于地表屬性變換劇烈的邊緣區(qū)域在圖像中是一片灰度變化劇烈的區(qū)域,對應的頻率值較高。傅里葉變換在實際中有非常明顯的物理意義,設f是一個能量有限的模擬信號,則其傅里葉變換就表示f的譜。從純粹的數(shù)學意義上看,傅里葉變換是將一個函數(shù)轉換為一系列周期函數(shù)來處理的。從物理效果看,傅里葉變換是將圖像從空間域轉換到頻率域,其逆變換是將圖像從頻率域轉換到空間域。換句話說,傅里葉變換的物理意義是將圖像的灰度分布函數(shù)變換為圖像的頻率分布函數(shù),傅里葉逆變換是將圖像的頻率分布函數(shù)變換為灰度分布函數(shù)。傅里葉變換以前,圖像(未壓縮的位圖)是由對在連續(xù)空間(現(xiàn)實空間)上的采樣得到一系列點的集合,我們習慣用一個二維矩陣表示空間上各點,則圖像可由z=f(x,y)來表示。由于空間是三維的,圖像是二維的,因此空間中物體在另一個維度上的關系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對應關系。為什么要提梯度?因為實際上對圖像進行二維傅里葉變換得到頻譜圖,就是圖像梯度的分布圖,當然頻譜圖上的各點與圖像上各點并不存在一一對應的關系,即使在不移頻的情況下也是沒有。傅里葉頻譜圖上我們看到的明暗不一的亮點,實際上圖像上某一點與鄰域點差異的強弱,即梯度的大小,也即該點的頻率的大?。梢赃@么理解,圖像中的低頻部分指低梯度的點,高頻部分相反)。一般來講,梯度大則該點的亮度強,否則該點亮度弱。這樣通過觀察傅里葉變換后的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點數(shù)更多,那么實際圖像是比較柔和的(因為各點與鄰域差異都不大,梯度相對較?。?,反之,如果頻譜圖中亮的點數(shù)多,那么實際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對頻譜移頻到原點以后,可以看出圖像的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個好處,它可以分離出有周期性規(guī)律的干擾信號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾。另外說明以下幾點:圖像經(jīng)過二維傅里葉變換后,其變換系數(shù)矩陣表明:若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數(shù)短陣的中心附近(圖中陰影區(qū))。若所用的二維傅里葉變換矩陣Fn的原點設在左上角,那么圖像信號能量將集中在系數(shù)矩陣的四個角上。這是由二維傅里葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區(qū)域。2 、變換之后的圖像在原點平移之前四角是低頻,最亮,平移之后中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)。5例子編輯一個關于實數(shù)離散傅里葉變換(Real DFT)實例先來看一個變換實例,一個原始信號的長度是16,于是可以把這個信號分解9個余弦波和9個正弦波(一個長度為N的信號可以分解成N/2+1個正余弦信號,這是為什么呢?結合下面的18個正余弦圖,我想從計算機處理精度上就不難理解,一個長度為N的信號,最多只能有N/2+1個不同頻率,再多的頻率就超過了計算機所能所處理的精度范圍),如下圖:9個正弦信號:9個余弦信號:把以上所有信號相加即可得到原始信號,至于是怎么分別變換出9種不同頻率信號的,我們先不急,先看看對于以上的變換結果,在程序中又是該怎么表示的,我們可以看看下面這個示例圖:上圖中左邊表示時域中的信號,右邊是頻域信號表示方法,從左向右表示正向轉換(Forward DFT),從右向左表示逆向轉換(Inverse DFT),用小寫x[]表示信號在每個時間點上的幅度值數(shù)組, 用大寫X[]表示每種頻率的幅度值數(shù)組, 因為有N/2+1種頻率,所以該數(shù)組長度為N/2+1,X[]數(shù)組又分兩種,一種是表示余弦波的不同頻率幅度值:Re X[],另一種是表示正弦波的不同頻率幅度值:Im X[],Re是實數(shù)(Real)的意思,Im是虛數(shù)(Imagine)的意思,采用復數(shù)的表示方法把正余弦波組合起來進行表示,但這里我們不考慮復數(shù)的其它作用,只記住是一種組合方法而已,目的是為了便于表達(在后面我們會知道,復數(shù)形式的傅里葉變換長度是N,而不是N/2+1)。用Matlab進行傅里葉變換FFT是離散傅里葉變換的快速算法,可以將一個信號變換到頻域。有些信號在時域上是很難看出什么特征的,但是如果變換到頻域之后,就很容易看出特征了。這就是很多信號分析采用FFT變換的原因。另外,F(xiàn)FT可以將一個信號的頻譜提取出來,這在頻譜分析方面也是經(jīng)常用的。FFT結果的具體物理意義。一個模擬信號,經(jīng)過ADC采樣之后,就變成了數(shù)字信號。采樣定理告訴我們,采樣頻率要大于信號頻率的兩倍。采樣得到的數(shù)字信號,就可以做FFT變換了。N個采樣點,經(jīng)過FFT之后,就可以得到N個點的FFT結果。為了方便進行FFT運算,通常N取2的整數(shù)次方。假設采樣頻率為Fs,信號頻率F,采樣點數(shù)為N。那么FFT之后結果就是一個為N點的復數(shù)。每一個點就對應著一個頻率點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始信號的幅度有什么關系呢?假設原始信號的峰值為A,那么FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。而第一個點就是直流分量,它的模值就是直流分量的N倍。而每個點的相位呢,就是在該頻率下的信號的相位。第一個點表示直流分量(即0Hz),而最后一個點N的再下一個點(實際上這個點是不存在的,這里是假設的第N+1個點,也可以看做是將第一個點分做兩半分,另一半移到最后)則表示采樣頻率Fs,這中間被N1個點平均分成N等份,每個點的頻率依次增加。例如某點n所表示的頻率為:Fn=(n1)*Fs/N。由上面的公式可以看出,F(xiàn)n所能分辨到頻率為為Fs/N,如果采樣頻率Fs為1024Hz,采樣點數(shù)為1024點,則可以分辨到1Hz。1024Hz的采樣率采樣1024點,剛好是1秒,也就是說,采樣1秒時間的信號并做FFT,則結果可以分析到1Hz,如果采樣2秒時間的信號并做FFT。如果要提高頻率分辨力,則必須增加采樣點數(shù),也即采樣時間。頻率分辨率和采樣時間是倒數(shù)關系。假設FFT之后某點n用復數(shù)a+bi表示,那么這個復數(shù)的模就是An=根號a*a+b*b,相位就是Pn=atan2(b,a)。根據(jù)以上的結果,就可以計算出n點(n≠1,且n=N/2)對應的信號的表達式為:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。對于n=1點的信號,是直流分量,幅度即為A1/N。由于FFT結果的對稱性,通常我們只使用前半部分的結果,即小于采樣頻率一半
點擊復制文檔內容
規(guī)章制度相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1