【總結(jié)】離散型隨機變量的期望1、什么叫n次獨立重復(fù)試驗?一.復(fù)習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
2024-11-18 15:23
【總結(jié)】量的方差高二數(shù)學選修2-3一、復(fù)習回顧1、離散型隨機變量的數(shù)學期望nniipxpxpxpxEX????????22112、數(shù)學期望的性質(zhì)bXaEbaXE???)()(P1xix2x······1p2pip···&
2024-11-17 19:27
【總結(jié)】一、教學目標:1、知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望。2、過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機變量的均值或期望。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學
2024-12-03 11:29
【總結(jié)】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變
2024-12-05 06:39
【總結(jié)】量的分布列(1)一個試驗如果滿足下述條件:(1)試驗可以在相同的條件下重復(fù)進行;(2)試驗的所有結(jié)果是明確的且不止一個;(3)每次試驗總是出現(xiàn)這些結(jié)果中的一個,但在試驗之前卻不能肯定這次試驗會出現(xiàn)哪一個結(jié)果。這樣的試驗就叫做一個隨機試驗,也簡稱試驗。隨機試驗一、復(fù)習引入:例(1)某人射擊一
2024-11-18 12:12
【總結(jié)】第二章隨機變量?隨機變量及其分布函數(shù)?離散型隨機變量?連續(xù)型隨機變量?隨機變量函數(shù)的分布在實際問題中,隨機試驗的結(jié)果可用數(shù)量來表示,這就產(chǎn)生了隨機變量的概念?!祀S機變量及其分布函數(shù)一方面,有些試驗,其結(jié)果與數(shù)有關(guān)(試驗結(jié)果就是一個數(shù));
2025-06-17 06:28
【總結(jié)】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。情感、態(tài)度與價值觀
2024-11-19 19:35
【總結(jié)】離散型隨機變量的均值與方差教學目標(1)進一步理解均值與方差都是隨機變量的數(shù)字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關(guān)應(yīng)用題.教學重點,難點:會求均值與方差,并能解決有關(guān)應(yīng)用題.教學過程一.問題情境復(fù)習回顧:1.離散型隨機變量的均值、方差、標準差的概念和意義,以及計算公式.2.練習
2024-12-09 04:43
【總結(jié)】2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。情感、態(tài)度與價值觀:承
2024-11-20 03:12
【總結(jié)】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,第二頁,編輯于星期六:點三十五分。,第三頁,編輯于星期六:點三十五分。,2.1離散型隨機變量及其分布列,2.1.1離散型隨機變量,第四頁,...
2024-10-22 18:55
【總結(jié)】2.1.1離散型隨機變量教學目標:知識目標:機變量的意義;,并能舉出離散性隨機變量的例子;,并恰當?shù)囟x隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數(shù)學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:
2024-11-20 03:14
【總結(jié)】Eξ=x1p1+x2p2+…+xipi+…,設(shè)離散型隨機變量ξ的概率分布為:ξx1x2…xi…PP1P2…Pi…則稱__________________________為ξ的數(shù)學期望,簡稱散型隨機變量取值的_______
【總結(jié)】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,2.3離散型隨機變量的均值與方差,2.3.2離散型隨機變量的方差,第二頁,編輯于星期六:點三十五分。,課前教材預(yù)案,課堂深度拓展,課末隨堂...
2024-10-22 18:57
【總結(jié)】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。情感、態(tài)度與價值觀:
2024-12-05 06:38
【總結(jié)】離散型隨機變量的均值與方差離散型隨機變量的均值問題導學一、求離散型隨機變量的均值(數(shù)學期望)活動與探究1從裝有2個紅球,2個白球和1個黑球的袋中逐一取球,已知每個球被抽到的可能性相同.若抽取后不放回,設(shè)取完紅球所需的次數(shù)為X,求X的分布列及數(shù)學期望.遷移與應(yīng)用1.隨機變量X的分布列為X-10
2024-11-18 16:52