【總結】一、教學目標:1、知識與技能:會求出某些簡單的離散型隨機變量的概率分布。2、過程與方法:認識概率分布對于刻畫隨機現象的重要性。3、情感、態(tài)度與價值觀:認識概率分布對于刻畫隨機現象的重要性。二、教學重點:離散型隨機變量的分布列的概念。教學難點:求簡單的離散型隨機變量的分布列。三、教學方法:探析歸納,講練結合四
2024-11-19 10:27
【總結】§2.1.1離散型隨機變量教學目標:知識目標:;,并能舉出離散性隨機變量的例子;,并恰當地定義隨機變量.能力目標:發(fā)展抽象、概括能力,提高實際解決問題的能力.情感目標:學會合作探討,體驗成功,提高學習數學的興趣.教學重點:隨機變量、離散型隨機變量、連續(xù)型隨機變量的意義教學難點:隨機變
2024-12-05 06:39
【總結】.,"";,,.,.,績的方差需要考察這個班數學成則兩極分化績是否某班同學數學成要了解很重要的是看平均分總體水平數學測驗中的要了解某班同學在一次例如數字特征趣的是隨機變量的某些有時我們更感興但在實際問題中概率機變量相關事件的分布列確定與該隨可以由它的概率對于離散型隨機變量?,1:2:3kg/36,kg/2
2025-06-21 08:53
【總結】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀
2024-11-19 19:35
【總結】《離散型隨機變量的均值與方差-期望值》教學目標?1了解離散型隨機變量的期望的意義,會根據離散型隨機變量的分布列求出期望.?⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的離散型隨機變量的期望?教學重點:離散型隨機變量的期望的概念?教學難點:根據離
2024-11-18 12:12
【總結】超幾何分布多做練習開門見山介紹兩點分布作業(yè):自學《隨堂通》6871PP至離散型隨機變量的分布列(三)今天,這節(jié)課我們來認識兩個特殊的分布列.首先,看一個簡單的分布列─兩點分布列:如果隨機變量?的分布列為:這樣的分布列稱為兩點分布列,稱隨機變量?服從兩點分布
2024-11-17 12:01
【總結】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數,在它附近擺動,這時就把這個常數叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【總結】§隨機變量的數字特征(二)學習目標1.熟練掌握均值公式及性質.2.能利用隨機變量的均值解決實際生活中的有關問題.學習過程【任務一】雙基自測1.分布列為ξ-101P121316的期望值為()A.0B.-1C.-13D.122.設
2024-11-19 10:26
【總結】【成才之路】2021-2021學年高中數學1課時離散型隨機變量的數學期望課時作業(yè)新人教B版選修2-3一、選擇題1.若隨機變量X~B(5,),則E(X)的值為()A.B.4C.5D.3[答案]B[解析]∵X~B(5,),∴E(X)=5×=4
2024-12-03 11:29
【總結】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀:
2024-12-05 06:38
【總結】§隨機變量的數字特征(一)學習目標1.通過實例理解離散型隨機變量均值的概念,能計算簡單離散型隨機變量的均值.2.理解離散型隨機變量均值的性質.3.掌握兩點分布、二項分布的均值.4.會利用離散型隨機變量的均值,反映離散型隨機變量取值水平,解決一些相關的實際問題.學習過程【任務一】知識要點通過閱讀課本P
2024-11-19 05:48
【總結】§.(1、2)離散型隨機變量及其分布列學習目標,會求某些簡單的離散型隨機變量的分布列。,并會用它來解決一些簡單的問題。學習過程【任務一】問題分析問題1:拋擲一枚質地均勻的骰子,觀察得到的點數,試驗可能出現的結果如何?問題2:拋擲一枚質地均勻的硬幣,記“正面向上”為1,“反面向上”為0,試驗可能出現
【總結】【與名師對話】2021-2021學年高中數學離散型隨機變量的均值課時作業(yè)新人教A版選修2-3一、選擇題1.已知隨機變量ξ的概率分布如下表所示:ξ012P715715115且η=2ξ+3,則E(η)等于()解析:E(ξ)=0×71
2024-11-28 00:07
【總結】離散型隨機變量的分布列我開始學習解答概率分布列問題時,經常出錯.后來通過慢慢摸索,發(fā)現大部分概率分布列問題在解答時需要用到分類討論的思想,下面談談自己的粗淺體會.1、對隨機變量?的取值進行分類例15封不同的信,投入三個不同的信箱,且每封信投入每個信箱的機會均等,?是三個箱子中放有信件數目的最大值.求?的分布列.分析:三個箱
2024-12-02 10:00
【總結】離散型隨機變量的均值與方差教學目標(1)進一步理解均值與方差都是隨機變量的數字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關應用題.教學重點,難點:會求均值與方差,并能解決有關應用題.教學過程一.問題情境復習回顧:1.離散型隨機變量的均值、方差、標準差的概念和意義,以及計算公式.2.練習
2024-12-09 04:43