【總結】平面向量中的三角形四心問題向量是高中數(shù)學中引入的重要概念,是解決幾何問題的重要工具。本文就平面向量與三角形四心的聯(lián)系做一個歸納總結。在給出結論及證明結論的過程中,可以體現(xiàn)數(shù)學的對稱性與推論的相互關系。1、重心(barycenter)三角形重心是三角形三邊中線的交點。重心到頂點的距離與重心到對邊中點的距離之比為2:1。結論1:結論2:二、垂心(orthocenter)
2025-03-25 01:21
【總結】......全等三角形綜合復習切記:“有三個角對應相等”和“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結】三角函數(shù)恒等變形及解三角形練習題一選擇題,則的值為()A.B.C.D.2.若則()A.B.C.D.3.在中,,則等于()A. B. C. D.△ABC中,,若此三角形有兩解,則b的范圍為()
2025-06-24 20:18
【總結】......1.(2013大綱)設的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內(nèi)角所對的邊分別為,且
2025-06-18 18:56
【總結】解三角形習題精講精練.1在中,若,,,則( ?。〢. B.C. D.2在等腰三角形ABC中,已知sinA∶sinB=1∶2,底邊BC=10,則△ABC的周長是。3在△ABC中,A=60°,B=45°,,則a=;b=4△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠
2025-06-07 22:03
【總結】三角形的外角(習題)?例題示范例1:已知:如圖,點E是直線AB,CD外一點,連接DE交AB于點F,∠D=∠B+∠E.求證:AB∥CD.①讀題標注②梳理思路要證AB∥CD,需要考慮同位角、內(nèi)錯角、同旁內(nèi)角.因為已知∠D=∠B+∠E,而由外角定理得∠AFE=∠B+∠E,故∠D=∠AFE,所以AB∥CD.③過程書寫證明:如圖,∵∠AFE是△B
2025-06-23 03:59
【總結】WORD完美格式1.(2013大綱)設的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內(nèi)角所對的邊分別為,且,,.(Ⅰ)求的值;(Ⅱ)求的值.4
2025-08-05 15:44
【總結】解三角形高考大題,帶答案1.(寧夏17)(本小題滿分12分)BACDE如圖,是等邊三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.解:(Ⅰ)因為,,所以.所以. 6分(Ⅱ)在中,,由正弦定理.故. 12分2.(江蘇17)(14分)某地有三家工廠,分別位于矩形ABCD的頂點A、B及CD的中點P處,已知AB=20k
【總結】第一章《解三角形》復習12sinsinsinabcRABC???正弦定理及其變形:其中,R是△ABC外接圓的半徑公式變形:a=_______,b=________,c=________2RsinA2RsinB2RsinCsin____,sin____,sin_
2025-08-05 16:45
【總結】三角函數(shù)及解三角形練習題 一.解答題(共16小題)1.在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大?。?.已知3sinθtanθ=8,且0<θ<π.(Ⅰ)求cosθ;(Ⅱ)求函數(shù)f(x)=6cosxcos(x﹣θ)在[0,]上的值域.3.已知是函數(shù)f(x)=2cos2x+asin2x+1的一個零點.(Ⅰ)求實數(shù)a的值;(Ⅱ
2025-03-24 05:42
2025-06-18 19:33
【總結】解三角形復習主干知識梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2025-08-05 16:02
【總結】....解三角形題型分類題型一:正余弦定理推論的應用題型二:三角形解的個數(shù)的確定
2025-03-25 07:46
【總結】..1.(新課標卷1理)(本小題滿分12分)如圖,在中,=90°,,,為內(nèi)一點,=90°(Ⅰ)若,求;(Ⅱ)若=150°,求.2.(新課標卷2理)(本小題滿分12分)的內(nèi)角的對邊分別為已知(Ⅰ)求;(Ⅱ)若=2,求的面積的最大值。3.(全國卷理文)
2025-08-05 02:47
【總結】......三角函數(shù)與解三角形 測試時間:120分鐘 滿分:150分第Ⅰ卷 (選擇題,共60分)一、選擇題(本題共12小題,每小題5分,共60分,每小題只有一個選項符合題意) 1
2025-05-15 23:44