【總結(jié)】第一章偏微分方程定解問題引言:在研究、探索自然科學(xué)和工程技術(shù)中,經(jīng)常遇到各種微分方程。如牛頓定律------(1)波動(dòng)方程------(2)熱傳導(dǎo)方程------(3)靜電場(chǎng)位方程------(4)激波方程------(5)等等。其中(1)為一維常微分方程;(2)----(4)為三維偏微分方
2025-03-25 06:49
【總結(jié)】第十章衍生產(chǎn)品的定價(jià)--------偏微分方程(PDE)第一節(jié)無風(fēng)險(xiǎn)組合與偏微分方程第二節(jié)衍生產(chǎn)品期權(quán)的定價(jià)第一節(jié)無風(fēng)險(xiǎn)組合與偏微分方程一、無風(fēng)險(xiǎn)組合衍生產(chǎn)品是以其它證券為基礎(chǔ)簽訂的合同,此合同有一定的期限,用T來表示到期日,則衍生工具的價(jià)格只
2025-08-11 15:20
【總結(jié)】第三章橢圓形方程的有限差分法兩點(diǎn)邊值問題的差分格式二階橢圓型方程的差分格式
2025-06-19 20:14
【總結(jié)】Chapter2IntroductiontoPartialDifferentialEquations偏微分方程式(PDE)就是指含有偏導(dǎo)函數(shù)(partialderivatives)的方程式,在常微分方程式(ODE)中,未知函數(shù)只是單變數(shù)函數(shù),而在PDE中,未知函數(shù)則為多變數(shù)函數(shù)。在實(shí)際的工程或物理問題中,所欲分析的物理量(即未知函數(shù))常受到不只一個(gè)變數(shù)的影響,所以一般多以
2025-05-16 00:51
【總結(jié)】§2-3運(yùn)動(dòng)微分方程的求解1)確定分析對(duì)象(隔離體)2)作受力分析(施力物、超距力、接觸力),畫隔離體圖3)建立合適坐標(biāo)系,寫出方程解析式并給出初始位置、速度4)給出二階常微分方程組的數(shù)字解5)闡明結(jié)果的物理含意與實(shí)質(zhì)作用力為時(shí)間、位置、速度的函數(shù);若力只是其中某一項(xiàng)的函數(shù),則問題可加以簡(jiǎn)化。〖例2-1〗求質(zhì)點(diǎn)m在常力作用下的運(yùn)動(dòng)。已知t=0時(shí)初位
2024-10-04 16:37
【總結(jié)】I江西師范大學(xué)2022屆本科畢業(yè)論文常見二階偏微分方程的建立和定解問題Themontwoorderpartialdifferentialequationandthesolution院系名稱:物理與通信電子學(xué)院學(xué)生姓名:黃瑜學(xué)生學(xué)
2025-01-09 00:34
【總結(jié)】求解偏微分方程的邊值問題本實(shí)驗(yàn)學(xué)習(xí)使用MATLAB的圖形用戶命令pdetool來求解偏微分方程的邊值問題。這個(gè)工具是用有限元方法來求解的,而且采用三角元。我們用內(nèi)個(gè)例題來說明它的用法。一、MATLAB支持的偏微分方程類型考慮平面有界區(qū)域D上的二階橢圓型PDE邊值問題: 其中未知函數(shù)為。它的邊界條件分為三類:(1)Direchlet條件: (2)Ne
2025-06-19 20:50
【總結(jié)】常微分方程的積分因子求解法內(nèi)容摘要:本文給出了幾類特殊形式的積分因子的求解方法,并推廣到較一般的形式。關(guān)鍵詞:全微分方程,積分因子。一、基本知識(shí)對(duì)于形如()的微分方程,如果方程的左端恰是,的一個(gè)可微函數(shù)的全微分,即=,則稱()為全微分方程.易知,上述全微分方程的通解為
2025-06-22 20:24
【總結(jié)】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實(shí)常數(shù),)(xf是已知函數(shù)。當(dāng)0)(?xf時(shí),形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【總結(jié)】《MATLAB語言》課程論文基于MATLAB語言求偏微分方程姓名:馬蘭學(xué)號(hào):12010245365專業(yè):通信工程班級(jí):2010
2025-06-18 14:48
【總結(jié)】Runge-Kutta積分方法所以得到:是精確的,中的平均速度。設(shè)是動(dòng)點(diǎn)在其中為:,一般的解法可以表示對(duì)?????????????????????)(!3)(2)()()()(),(),().,(),(32111nnnnnnnnnnnnnnntYhtYhtYhtYhtYtYYttY
2025-05-05 18:22
【總結(jié)】第十章常微分方程與差分方程嘉興學(xué)院17February2022第1頁差分方程第十章常微分方程與差分方程嘉興學(xué)院17February2022第2頁差分的概念及性質(zhì).Δ,)1()()1()0(:).(111210xxxxxxxyyyyy
【總結(jié)】長(zhǎng)春工業(yè)大學(xué)碩士學(xué)位論文分碩士學(xué)位論文基于FPGA的MACRO運(yùn)動(dòng)控制網(wǎng)絡(luò)的研究及實(shí)現(xiàn)ResearchandRealizationofMACROMotionControlNetworkbasedonFPGAIV摘要圖像去噪是圖像處理中一項(xiàng)最基本的課題,在圖像的采集、獲取
2025-06-22 01:10
【總結(jié)】計(jì)算機(jī)控制技術(shù)課程講義1步驟:1、給定系統(tǒng)的輸入和必要初始條件。(輸出的響應(yīng)函數(shù)必然在某種輸入激勵(lì)條件下產(chǎn)生)2、對(duì)微分方程兩邊進(jìn)行拉氏變換,變微分運(yùn)算為代數(shù)運(yùn)算。3、在S域中解出系統(tǒng)輸出的拉氏變換表達(dá)式,應(yīng)用拉氏反變換求得其時(shí)域解。用拉氏變換求解線性微分方程計(jì)算機(jī)控制技術(shù)課程講義2例:前例3力學(xué)系統(tǒng),系統(tǒng)輸出:
2025-05-12 12:11
【總結(jié)】2022/4/131高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院第7章微分方程問題的計(jì)算機(jī)求解?薛定宇、陳陽泉著《高等應(yīng)用數(shù)學(xué)問題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開發(fā):劉瑩瑩、薛定宇2022/4/132高等應(yīng)用數(shù)學(xué)問題的MATLAB求解東北大學(xué)信息學(xué)院主要
2025-03-22 04:31