【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對(duì)象:高一學(xué)生課時(shí):1課時(shí)提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過(guò)現(xiàn)實(shí)問(wèn)題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過(guò)在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對(duì)于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】第一篇:淺談均值不等式的教學(xué) 數(shù)理 淺談均值不等式的教學(xué) 岳陽(yáng)縣第四中學(xué)楊偉 均值不等式是高中數(shù)學(xué)新教材第六章教學(xué)的重點(diǎn),也是難點(diǎn),它是證明不等式、解決求最值問(wèn)題的重要工具,它的應(yīng)用范圍幾乎涉...
2024-11-06 07:26
【總結(jié)】第一篇:均值不等式的證明方法 柯西證明均值不等式的方法byzhangyuong(數(shù)學(xué)之家) 本文主要介紹柯西對(duì)證明均值不等式的一種方法,這種方法極其重要。一般的均值不等式我們通??紤]的是An3Gn...
2024-10-27 15:16
【總結(jié)】......一、選擇題1.若,且,那么的最小值為(???)A.B.C.D.2.設(shè)若的最小值( )A.
2025-03-25 00:08
【總結(jié)】大學(xué)數(shù)學(xué)畢業(yè)論文(設(shè)計(jì))_______________________________________________________________________________________________________第1頁(yè)(共10頁(yè))淺談均值不等式在生活中的應(yīng)用價(jià)值[摘要]均值不等式是數(shù)學(xué)中一個(gè)重要的不等式,它的許多
2025-05-20 15:17
【總結(jié)】第一篇:均值不等式教學(xué)設(shè)計(jì) 教學(xué)目標(biāo) (一)知識(shí)與技能:明確均值不等式及其使用條件,能用均值不等式解決簡(jiǎn)單的最值問(wèn)題.(二)過(guò)程與方法:通過(guò)對(duì)問(wèn)題主動(dòng)探究,實(shí)現(xiàn)定理的發(fā)現(xiàn),體驗(yàn)知識(shí)與規(guī)律的形成...
2024-10-27 19:23
【總結(jié)】第一篇:均值不等式說(shuō)課稿 說(shuō)課題目:高中數(shù)學(xué)人教B版必修第三章第二節(jié) -------均值不等式(1) 一、本節(jié)內(nèi)容的地位和作用 均值不等式又叫做基本不等式,選自人教B版(必修5)的第3章的2節(jié)...
2024-11-05 17:55
【總結(jié)】均值不等式一、基本知識(shí)梳理:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的算術(shù)平均值.:如果a﹑b∈R+,那么叫做這兩個(gè)正數(shù)的幾何平均值:如果a﹑b∈R,那么a2+b2≥(當(dāng)且僅當(dāng)a=b時(shí),取“=”)均值定理:如果a﹑b∈R+,那么≥(當(dāng)且僅
【總結(jié)】均值不等式及其應(yīng)用一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
【總結(jié)】......一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明設(shè)a1,a2,a3...an是n個(gè)正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡(jiǎn)單的詳細(xì)過(guò)程,謝謝?。∧?..
2024-11-05 18:47
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定
2024-08-14 04:41
【總結(jié)】第一篇:均值不等式的證明 平均值不等式及其證明 平均值不等式是最基本的重要不等式之一,在不等式理論研究和證明中占有重要的位置。平均值不等式的證明有許多方法,這里,我們選了部分具有代表意義的證明方法...
2024-10-27 18:38
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》審校:王偉教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定
2024-11-09 03:52
【總結(jié)】第一篇:均值不等式練習(xí)題 均值不等式求最值及不等式證明2013/11/2 3題型 一、均值不等式求最值 例題: 1、湊系數(shù):當(dāng)0x4時(shí),求y=x(8-2x)的最大值。 2、湊項(xiàng):已知x...
2024-11-05 18:14