freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新版北師大八年級(jí)數(shù)學(xué)教學(xué)設(shè)計(jì)第一章三角形的證明(全章)(編輯修改稿)

2025-07-04 20:04 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 個(gè)怎樣的三角形?能拼出一個(gè)等邊三角形嗎?在你所拼得的等邊三角形中,有哪些線段存在相等關(guān)系,有哪些線段存在倍數(shù)關(guān)系,你能得到什么結(jié)論?說(shuō)說(shuō)你的理由.活動(dòng)目的:讓學(xué)生經(jīng)歷拼擺三角尺的活動(dòng),發(fā)現(xiàn)結(jié)論:在直角三角形中,如果一個(gè)銳角等于30176。,那么它所對(duì)的直角邊等于斜邊的一半.活動(dòng)注意事項(xiàng)與效果:學(xué)生一般可以得出下面兩種圖形:其中第1個(gè)圖形是等邊三角形,對(duì)于該圖學(xué)生也可以得出BD=AB,從而得出:在直角三角形中,如果一個(gè)銳角等于30176。,那么它所對(duì)的直角邊等于斜邊的一半.注意,教學(xué)過(guò)程中,教師應(yīng)注意引導(dǎo)學(xué)生說(shuō)明為什么所得到的三角形是等邊三角形。具體的說(shuō)明過(guò)程可以如下:方法1:因?yàn)椤鰽BD≌ACD,所以AB=AC.又因?yàn)镽t△ABD中,∠BAD=60176。,所以∠ABD=60176。,有一個(gè)角是60176。的等腰三角形是等邊三角形.方法2:圖(1)中,∠B=∠C=60,∠BAC=∠BAD+∠CAD=30176。+30176。=60176。,所以∠B=∠C=∠BAC=60176。,即△ABC是等邊三角形.如果學(xué)生不能很快得出30度所對(duì)直角邊是斜邊一半,教師可以在圖上標(biāo)出各個(gè)字母,并要求學(xué)生思考其中哪些線段直接存在倍數(shù)關(guān)系,并在將三角板分開,思考從中可以得到什么結(jié)論。然后在學(xué)生得到該結(jié)論的基礎(chǔ)上,再證明該定理。定理:在直角三角形中,如果一個(gè)銳角等于30176。,那么它所對(duì)的直角邊等于斜邊的一半.已知:如圖,在Rt△ABC中,∠C=90176。,∠BAC=30176。.求證:BC=AB.分析:從三角尺的拼擺過(guò)程中得到啟發(fā),延長(zhǎng)BC至D,使CD=BC,連接AD.證明:在△ABC中,∠ACB=90176。,∠BAC=30176?!螧=60176。.延長(zhǎng)BC至D,使CD=BC,連接AD(如圖所示).∵∠ACB=90176。∴∠ACB=90176?!逜C=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的對(duì)應(yīng)邊相等).∴△ABD是等邊三角形(有一個(gè)角是60176。的等腰三角形是等邊三角形).∴BC=BD=AB.第四環(huán)節(jié):變式訓(xùn)練 鞏固新知活動(dòng)1:直接提請(qǐng)學(xué)生思考剛才命題的逆命題:在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30176。嗎?如果是,請(qǐng)你證明它.在師生分析的基礎(chǔ)上,給出證明:已知:如圖,在Rt△ABC中,∠C=90176。,BC=AB.求證:∠BAC=30176。證明:延長(zhǎng)BC至D,使CD=BC,連接AD.∵∠ACB=90176。,∴∠ACD=90176。.又∵AC=AC.∴△ACB≌△ACD(SAS).∴AB=AD.∵CD=BC,∴BC=BD.又∵BC=AB,∴AB=BD.∴AB=AD=BD,即△ABD是等邊三角形.∴∠B=60176。.在Rt△ABC中,∠BAC=30176。.注意事項(xiàng):該命題的證明中輔助線較復(fù)雜,但恰有前面原命題探究活動(dòng)過(guò)程的鋪墊,可以給學(xué)生一些啟示,因此,教學(xué)中,教師可以引導(dǎo)學(xué)生思考:從前面定理證明的輔助線的作法中能否得到啟示?活動(dòng)2 :呈現(xiàn)例題,在師生分析的基礎(chǔ)上,運(yùn)用所學(xué)的新定理解答例題。[例題]等腰三角形的底角為15176。,腰長(zhǎng)為2a,求腰上的高CD的長(zhǎng).分析:觀察圖形可以發(fā)現(xiàn)在Rt△ADC中,AC=2a而∠DAC是△ABC的一個(gè)外角,而∠DAC=15176。=30176。,根據(jù)在直角三角形中,30176。角所對(duì)的直角邊是斜邊的一半,可求出CD.解:∵∠ABC=∠ACB=15176?!唷螪AC=∠ABC+∠ACB=15176。+15176。=30176。∴CD=AC=2a= a(在直角三角形中,如果一個(gè)銳角等于30176。,那么它所對(duì)的直角邊等于斜邊的一半).活動(dòng)目的:在例題求解中鞏固新知。第五環(huán)節(jié):暢談收獲 課時(shí)小結(jié)讓學(xué)生對(duì)課堂學(xué)習(xí)進(jìn)行小結(jié),注意總結(jié)具體的知識(shí)、結(jié)論,以及解決問(wèn)題的方法和蘊(yùn)含其中的思想,如分類討論思想、逆向思維等。第六環(huán)節(jié):布置作業(yè) 四、教學(xué)反思本節(jié)課,難點(diǎn)在于探究?jī)蓚€(gè)定理:“在三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30176?!焙汀爸苯侨切沃?,30176。所對(duì)的直角邊等于斜邊的一半”,由于設(shè)計(jì)了三角板操作的實(shí)踐活動(dòng),有效地突破了難點(diǎn),因而,課堂學(xué)生思維非常靈活,方法多樣,取得較好的效果。 第一章 三角形的證明2.直角三角形(一)一、學(xué)情分析直角三角形全等的條件和勾股定理及其逆定理在前面已由學(xué)生通過(guò)一些直觀的方法進(jìn)行了探索,所以學(xué)生對(duì)這些結(jié)論已經(jīng)有所了解,對(duì)于它們,教科書努力將證明的思路展現(xiàn)出來(lái).例如以前我們?cè)酶钛a(bǔ)法驗(yàn)證過(guò)勾股定理,而此處對(duì)勾股定理的證明應(yīng)以我們認(rèn)定的幾條公理和由此推出的定理為依據(jù)進(jìn)行,雖然證明的方法有多種,但對(duì)學(xué)生來(lái)說(shuō),這些都有難度,因此教科書將其兩種證明方法放在“讀一讀’’中,供有興趣的學(xué)生閱讀,不要求所有學(xué)生掌握,其逆定理的證明方法對(duì)學(xué)生來(lái)說(shuō)也是有一定難度的.二、教學(xué)目標(biāo)1.知識(shí)目標(biāo):(1)掌握直角三角形的性質(zhì)定理(勾股定理)及判定定理的證明方法,并能應(yīng)用定理解決與直角三角形有關(guān)的問(wèn)題。(2)結(jié)合具體例子了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,知道原命題成立,其逆命題不一定成立.2.能力目標(biāo): (1)進(jìn)一步經(jīng)歷用幾何符號(hào)和圖形描述命題的條件和結(jié)論的過(guò)程,建立初步的符號(hào)感,發(fā)展抽象思維.(2)進(jìn)一步掌握推理證明的方法,發(fā)展演繹推理的能力.3.教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):①了解勾股定理及其逆定理的證明方法.②結(jié)合具體例子了解逆命題的概念,識(shí)別兩個(gè)互逆命題,知道原命題成立,其逆命題不一定成立.難點(diǎn):勾股定理及其逆定理的證明方法.三、教學(xué)過(guò)程本節(jié)課設(shè)計(jì)了七個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課;第二環(huán)節(jié):講述新課;第三環(huán)節(jié):議一議;第四環(huán)節(jié):想一想;第五環(huán)節(jié):.隨堂練習(xí);第六環(huán)節(jié):課時(shí)小結(jié);第七環(huán)節(jié):課后作業(yè)。1:創(chuàng)設(shè)情境,引入新課通過(guò)問(wèn)題1,讓學(xué)生在解決問(wèn)題的同時(shí),回顧直角三角形的一般性質(zhì)。[問(wèn)題1]一個(gè)直角三角形房梁如圖所示,其中BC⊥AC, ∠BAC=30176。,AB=10 cm,CB1⊥AB,B1C⊥AC1,垂足分別是BC1,那么BC的長(zhǎng)是多少? B1C1呢?解:在Rt△ABC中,∠CAB=30176。,AB=10 cm,∴BC=AB=10=5 cm.∵CB1⊥AB,∴∠B+∠BCB1=90176。又∵∠A+∠B=90176。∴∠BCB1 =∠A=30176。在Rt△ACB1中,BB1=BC=5= cm=2.5 cm.∴AB1=AB=BB1=10—=(cm).∴在Rt△C1AB1中,∠A=30176?!郆1C1 =AB1= =(cm).解決這個(gè)問(wèn)題,主要利用了上節(jié)課已經(jīng)證明的“30176。角的直角三角形的性質(zhì)”.由此提問(wèn):“一般的直角三角形具有什么樣的性質(zhì)呢?”從而引入勾股定理及其證明。教材中曾利用數(shù)方格和割補(bǔ)圖形的方法得到了勾股定理.如果利用公理及由其推導(dǎo)出的定理,能夠證明勾股定理嗎?請(qǐng)同學(xué)們打開課本P18,閱讀“讀一讀”,了解一下利用教科書給出的公理和推導(dǎo)出的定理,證明勾股定理的方法.2:講述新課閱讀完畢后,針對(duì)“讀一讀”中使用的兩種證明方法,著重討論第一種,第二種方法請(qǐng)有興趣的同學(xué)課后閱讀.(1).勾股定理及其逆定理的證明.已知:如圖,在△ABC中,∠C=90176。,BC=a,AC=b,AB=c.求證:a2+b2=c2.證明:延長(zhǎng)CB至D,使BD=b,作∠EBD=∠A,并取BE=c,連接ED、AE(如圖),則△ABC≌△BED.∴∠BDE=90176。,ED=a(全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等).∴四邊形ACDE是直角梯形.∴S梯形ACDE=(a+b)(a+b) = (a+b)2.∴∠ABE=180176。-(∠ABC+∠EBD)=180176。-90176。=90176。,AB=BE.∴S△ABE=c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴(a+b) 2= c2 + ab + ab, 即a2 + ab + b2=c2 + ab,∴a2+b2=c2教師用多媒體顯示勾股定理內(nèi)容,用課件演示勾股定理的條件和結(jié)論,并強(qiáng)調(diào).具體如下:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.反過(guò)來(lái),如果在一個(gè)三角形中,當(dāng)兩邊的平方和等于第三邊的平方時(shí),我們?cè)枚攘康姆椒ǖ贸觥斑@個(gè)三角形是直角三角形”的結(jié)論.你能證明此結(jié)論嗎?師生共同來(lái)完成.已知:如圖:在△ABC中,AB2+AC2=BC2求證:△ABC是直角三角形.分析:要從邊的關(guān)系,推出∠A=90176。是不容易的,如果能借助于△ABC與一個(gè)直角三角形全等,而得到∠A與對(duì)應(yīng)角(構(gòu)造的三角形的直角)相等,可證.證明:作Rt△A′B′C′,使∠A′=90176。,A′B′=AB,A′C′、AC(如圖),則A′B′2+A′C′2.(勾股定理).∵AB2+AC2=BC2,A′B′=AB,A′C′∴BC2=B′C′2∴BC=B′C′∴△ABC≌△A′B′C′(SSS)∴∠A=∠A′=90176。(全等三角形的對(duì)應(yīng)角相等).因此,△ABC是直角三角形.總結(jié)得勾股逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形.(2).互逆命題和互逆定理.觀察上面兩個(gè)命題,它們的條件和結(jié)論之間有怎樣的關(guān)系?在前面的學(xué)習(xí)中還有類似的命題嗎?通過(guò)觀察,學(xué)生會(huì)發(fā)現(xiàn):上面兩個(gè)定理的條件和結(jié)論互換了位置,即勾股定理的條件是第二個(gè)定理的結(jié)論,結(jié)論是第二個(gè)定理的條件.這樣的情況,在前面也曾遇到過(guò).例如“兩直線平行,內(nèi)錯(cuò)角相等”,交換條件和結(jié)論,就得到“內(nèi)錯(cuò)角相等,兩直線平行”.又如“在直角三角形中,如果一個(gè)銳角等于30176。,那么它所對(duì)的直角邊就等于斜邊的一半”.交換此定理的條件和結(jié)論就可得“在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30176?!?。3:議一議觀察下面三組命題:學(xué)生以分組討論形式進(jìn)行,最后在教師的引導(dǎo)下得出命題與逆命題的區(qū)別與聯(lián)系。讓學(xué)生暢所欲言,體會(huì)逆命題與命題之間的區(qū)別與聯(lián)系,要能夠清晰地分別出一個(gè)命題的題設(shè)和結(jié)論,能夠?qū)⒁粋€(gè)命題寫出“如果……;那么……”的形式,以及能夠?qū)懗鲆粋€(gè)命題的逆命題?;顒?dòng)中,教師應(yīng)注意給予適度的引導(dǎo),學(xué)生若出現(xiàn)語(yǔ)言上不嚴(yán)謹(jǐn)時(shí),要先讓這個(gè)疑問(wèn)交給學(xué)生來(lái)剖析,然后再總結(jié)?;顒?dòng)時(shí)可以先讓學(xué)生觀察下面三組命題: 如果兩個(gè)角是對(duì)頂角,那么它們相等.如果兩個(gè)角相等,那么它們是對(duì)頂角.如果小明患了肺炎,那么他一定發(fā)燒.如果小明發(fā)燒,那么他一定患了肺炎.三角形中相等的邊所對(duì)的角相等.三角形中相等的角所對(duì)的邊相等.上面每組中兩個(gè)命題的條件和結(jié)論也有類似的關(guān)系嗎?與同伴交流.不難發(fā)現(xiàn),每組第二個(gè)命題的條件是第一個(gè)命題的結(jié)論,第二個(gè)命題的結(jié)論是第一個(gè)命題的條件.在兩個(gè)命題中,如果一個(gè)命題條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,那么這兩個(gè)命題稱為互逆命題,其中一個(gè)命題稱為另一個(gè)命題的逆命題,相對(duì)于逆命題來(lái)說(shuō),另一個(gè)就為原命題.再來(lái)看“議一議”中的三組命題,它們就稱為互逆命題,如果稱每組的第一個(gè)命題為原命題,另一個(gè)則為逆命題.請(qǐng)同學(xué)們判斷每組原命題的真假.逆命題呢?在第一組中,原命題是真命題,而逆命題是假命題.在第二組中,原命題是真命題,而逆命題是假命題.在第三組中,原命題和逆命題都是真命題.由此我們可以發(fā)現(xiàn):原命題是真命題,而逆命題不一定是真命題.4:想一想要寫出原命題的逆命題,需先弄清楚原命題的條件和結(jié)論,然后把結(jié)論變換成條件,條件變換成結(jié)論,就得到了逆命題.請(qǐng)學(xué)生寫出命題“如果兩個(gè)有理數(shù)相等,那么它們的平方相等”的逆命題嗎?它們都是真命題嗎?從而引導(dǎo)學(xué)生思考:原命題是真命題嗎?逆命題一定是真命題嗎? 并通過(guò)具體的實(shí)例說(shuō)明。如果有些命題,原命題是真命題,逆命題也是真命題,那么我們稱它們?yōu)榛ツ娑ɡ?其中逆命題成為原命題(即原定理)的逆定理. 能舉例說(shuō)出我們已學(xué)過(guò)的互逆定理?如我們剛證過(guò)的勾股定理及其逆定理,“兩直線平行,內(nèi)錯(cuò)角相等”與“內(nèi)錯(cuò)角相等,兩直線平行”.“全等三角形對(duì)應(yīng)邊相等”和“三邊對(duì)應(yīng)相等的三角形全等”、“等邊對(duì)等角”和“等角對(duì)等邊”等.5:隨堂練習(xí)說(shuō)出下列命題的逆命題,并判斷每對(duì)命題的真假。(1)四邊形是多邊形;(2)兩直線平行,內(nèi)旁內(nèi)角互補(bǔ);(3)如果ab=0,那么a=0, b=0[分析]互逆命題和互逆定理的概念,學(xué)生接受起來(lái)應(yīng)不會(huì)有什么困難,尤其是對(duì)以“如果……那么……”形式給出的命題,寫出其逆命題較為容易,但對(duì)于那些不是以這種形式給出的命題,敘述其逆命題有一定困難.可先分析命題的條件和結(jié)論,然后寫出逆命題.解:(1)多邊形是四邊形.原命題是真命題,而逆命題是假命題.(2)同旁內(nèi)角互補(bǔ),兩直線平行.原命題與逆命題同為正.(3)如果a=0,6=0,那么ab=0.原命題是假命題,而逆命題是真命題.6:課時(shí)小結(jié)這節(jié)課我們了解了勾股定理及逆定理的證明方法,并結(jié)合數(shù)學(xué)和生活中的例子了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,知道,原命題成立,其逆命題不一定成立,掌握了證明方法,進(jìn)一步發(fā)展了演繹推理能力.7:課后作業(yè)習(xí)題1.5第4題四、教學(xué)反思學(xué)生對(duì)于命題和逆命題中題設(shè)和結(jié)論分析和把握不是太準(zhǔn),部分學(xué)生尤其是在語(yǔ)言表述方面仍然有些欠缺,作為教師要關(guān)注到學(xué)生的個(gè)體差異,對(duì)于學(xué)習(xí)本節(jié)知識(shí)有困難的學(xué)生要給予及時(shí)的幫助和指導(dǎo)。使每一個(gè)學(xué)生都能經(jīng)歷證明的過(guò)程,為他們提供充分地尋找證明思路的時(shí)間、空間和方法,體會(huì)證明的必要性.另外學(xué)生對(duì)于命題成立的證明方法,鍛煉他們的演繹推理能力離目標(biāo)還是有一定的差距。所以作為教師一定不能急躁,要本著以學(xué)生為本的目的,注意學(xué)生個(gè)體差異,對(duì)學(xué)習(xí)證明有困難的學(xué)生給予幫助和指導(dǎo).第一章 三角形的證明2.直角三角形(二)一、學(xué)情分析學(xué)生在學(xué)習(xí)直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學(xué)習(xí)過(guò)程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個(gè)定理的證明以及利用這個(gè)定理解決相關(guān)問(wèn)題還是一個(gè)較高的要求。二、教學(xué)任務(wù)分析
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1