【總結(jié)】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-10 10:27
【總結(jié)】§2行列式的性質(zhì)與計(jì)算§1行列式的定義§3行列式展開定理、克拉默法則第一章行列式§3行列式展開定理、克拉默法則一、余子式、代數(shù)余子式二、行列式按一行(列)展開法則三、克拉默法則§3行列式的展開定理引例,312213332112322
2025-05-07 00:52
【總結(jié)】行列式和矩陣---《線性代數(shù)》線性代數(shù)起源于處理線性關(guān)系問題,它是代數(shù)學(xué)的一個分支,形成于20世紀(jì),但歷史卻非常久遠(yuǎn),部分內(nèi)容在東漢初年成書的《九章算術(shù)》里已有雛形論述,不過直到18—19世紀(jì)期間,隨著研究線性方程組和變量線性變換問題的深入,才先后產(chǎn)生了行列式和矩陣的概念,為處理線性問題提供了強(qiáng)有力的理論工具,并推動了線性代數(shù)的
2025-01-15 05:50
【總結(jié)】行列式的計(jì)算是高等代數(shù)中的難點(diǎn)、重點(diǎn),特別是高階行列式的計(jì)算,學(xué)生在學(xué)習(xí)過程中,普遍存在很多困難,難于掌握計(jì)算高階行列式的方法很多,但具體到一個題,要針對其特征,選取適當(dāng)?shù)姆椒ㄇ蠼?。方?定義法00020000001999002022000001??????????利用
【總結(jié)】第二章矩陣運(yùn)算和行列式§矩陣及其運(yùn)算一.矩陣與向量1.m?n矩陣元素:aij(i=1,…,m,j=1,…,n)?§§§§a11a12…a1na21a22…a2n…………am1
2025-04-29 03:05
【總結(jié)】學(xué)習(xí)要求理解Cramer法則,會用Cramer法則解方程組;理解矩陣的概念,了解單位矩陣、對角矩陣三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣的定義及性質(zhì);掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置及其運(yùn)算率,了解方陣的冪與方陣乘積的行列式的性質(zhì)。如果線性方程組11112211211222221
2025-05-11 20:44
【總結(jié)】行列式按行(列)展開?對角線法則只適用于二階與三階行列式.?本節(jié)主要考慮如何用低階行列式來表示高階行列式.一、引言122331111221221333332132132231112332aaaaaaaaaaaaaaaaaa??????1
【總結(jié)】行列式的計(jì)算方法行列式的計(jì)算是高等代數(shù)中的難點(diǎn)、重點(diǎn),特別是高階行列式的計(jì)算,學(xué)生在學(xué)習(xí)過程中,普遍存在很多困難,難于掌握計(jì)算高階行列式的方法很多,但具體到一個題,要針對其特征,選取適當(dāng)?shù)姆椒ㄇ蠼?。方?定義法利用n階行列式的定義計(jì)算行列式,此法適用于0比較多的行列式。00020000
【總結(jié)】-1-第二章矩陣?yán)碚摶A(chǔ)§矩陣分塊法§可逆矩陣§n階(方陣的)行列式§矩陣的運(yùn)算§矩陣的秩與矩陣的等價(jià)標(biāo)準(zhǔn)形§線性方程組解的存在性定理.CRAMER法則-2-§n階(方陣的)行列式
2025-05-05 18:20
【總結(jié)】二階行列式與逆矩陣選修4-2矩陣與變換2022年6月4日星期六復(fù)習(xí):A,如果存在一個二階矩陣B,使得AB=
2025-05-07 06:31
【總結(jié)】EXCEL的矩陣運(yùn)算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說明』來查“MMULT”的詳細(xì)用法),輸入“TRANSPOSE(“因?yàn)锳T是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範(fàn)圍(也可以直接輸入)。.A範(fàn)圍
2025-08-05 08:58
【總結(jié)】行列式與矩陣n階行列式的概念行列式的性質(zhì)與計(jì)算Cramer法則第六章矩陣及其計(jì)算逆矩陣與矩陣的秩分塊矩陣矩陣的初等變換n階行列式第一節(jié)學(xué)習(xí)重點(diǎn)余子式與代數(shù)余子式的概念n階行列式的概念●行列式的引入引
2024-10-16 21:34
【總結(jié)】第二章行列式與矩陣求逆一、二階、三階行列式二、n階行列式三、n階行列式的性質(zhì)與計(jì)算五、逆矩陣四、線性方程組的行列式解法——克萊姆法則§、三階行列式用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2?
2025-01-15 15:51
【總結(jié)】§行列式的基本性質(zhì)第二章行列式直接用定義計(jì)算行列式是很麻煩的事,本節(jié)要導(dǎo)出行列式運(yùn)算的一些性質(zhì),利用這些性質(zhì),將使行列式的計(jì)算大為簡化。轉(zhuǎn)置行列式:把n階行列式111212122212nnnnnnaaaaaaDaaa?的第i行變?yōu)榈趇
2025-08-11 12:05
【總結(jié)】廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)線性代數(shù)行列式.矩陣的概念和運(yùn)算.逆矩陣.矩陣的初等變換.一般線性方程組.廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)行列式主要內(nèi)容:1.二階行列式.2.三階行列式.3.n階行列式.4.行列式的性質(zhì).5.克
2025-05-12 14:27