【總結】異面直線所成的角的求法法一:平移法例1:在正方體中,求下列各對異面直線所成的角。(1)與BC;?。?)與;?。?)與AC。法二:中位線例2:在空間四邊形ABCD中,AB=CD,且ABCD,點M、N分別為BC、AD的中點,求直線AB與MN所成的角。變式:在空間四邊形ABCD中,點M、N分別為BC、AD的中點,AB=
2025-06-22 06:44
【總結】異面直線所成角問題1.[2016·全國卷Ⅰ]平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )A.B.C.D.[解析]A 在正方體ABCD-A1B1C1D1外依次再作兩個一樣的正方體,如圖所示,易知AE∥B1D1,AF∥CD1,
2025-07-26 01:46
【總結】....異面直線所成角問題1.[2016·全國卷Ⅰ]平面α過正方體ABCD-A1B1C1D1的頂點A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,則m,n所成角的正弦值為( )A.B.C.D.[解析]A 在正方體
2025-03-25 01:47
【總結】1有斜率的兩直線平行的充要條件是:兩直線的斜率相等,在y軸上的截距不等.2有斜率的兩直線垂直的充要條件是:兩直線的斜率之積為-1.復習回顧學習目標:.l1到l2的角及兩直線夾角的定義.l1到l2的角及兩直線夾角的計算公式.l1到l2的角
2024-11-06 21:48
【總結】變量間的相關關系變量之間的相關關系兩個變量的線性相關第二課時問題提出1.兩個變量之間的相關關系的含義如何?成正相關和負相關的兩個相關變量的散點圖分別有什么特點?自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系.正相關的散點圖中的點散布在從左下角到右上角
2025-05-06 22:03
【總結】兩直線的夾角一.夾角的定義:平面上兩條直線相交時,構成了四個角。它們是兩對對頂角。規(guī)定兩條直線相交成的銳角(或直角)稱為兩直線的夾角。如果兩條直線平行或重合,規(guī)定它們的夾角為0xyOL1L2α1d2dθ2d1dθxyOαL2L1夾角的范圍:[0
2024-11-09 01:26
【總結】空間兩條直線的位置關系異面直線情境1與A1C具有怎樣的位置關系?在正方體ABCD-A1B1C1D1中,直線AB異面即:不共面逆向思考為何不共面(不平行也不相交)?情境2DCBAA1D1C1B1觀察發(fā)現創(chuàng)設情境DCBAA
2024-11-17 15:23
【總結】浙江省玉環(huán)縣楚門中學呂聯華新課引入:在正方體A1B1C1D1-ABCD中,說出下列各對線段的位置關系ABCDA1B1C1D1(1)AB和C1D1;(2)A1C1和AC;(3)A1C和D1B:(4)AB和CC1;(5)BD1和A1C1;
2025-08-16 01:02
【總結】課題:異面直線所成的角教材:中等職業(yè)教育課程改革國家規(guī)劃新教材《數學》(基礎模塊)下冊(修訂本)(語文出版社)一、教材分析“異面直線所成的角”是中等職業(yè)教育課程改革國家規(guī)劃新教材,語文出版社《數學》(基礎模塊)下冊(修訂本)第九單元第二節(jié)第2部分,“直線與直線所成的角”,主要的內容是認識異面直線以及掌握異面直線夾角的定義和求解方法.(1),、培養(yǎng)學生
2025-04-17 01:12
【總結】上海市八中學已知直線l1:3x?4y+6=0與直線l2:2x+y+2=0(1)判斷位置關系;,01243???D??兩直線相交。(2)求上述兩直線的夾角。.255212)4(3|1)4(23|cos2222??????????.2552arccos兩直線的夾角為?)0,(20:)0,(10:
2024-11-09 00:54
2025-08-16 01:49
【總結】兩條直線的夾角制作鄧小鸞定義1:把直線l1按逆時針方向旋轉到與l2重合時所轉的角,叫做l1到l2的角(記為θ).θ的取值范圍是(0,π).l1到l2的角是θ1,l2到l1的角是θ2,則θ1+θ2=π定義2:兩條直線相交時
2025-08-16 02:00
2024-11-09 08:12
【總結】異面直線的判斷與所成的角 一.選擇題(共10小題)1.異面直線是指( )A.空間中兩條不相交的直線B.平面內的一條直線與平面外的一條直線C.分別位于兩個不同平面內的兩條直線D.不同在任何一個平面內的兩條直線2.已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點,G、H分別是BC,CD上的點,且.,則直線FH與直線EG( ?。〢.平行 B.
2025-08-05 05:37
【總結】構造異面直線所成角的幾種方法異面直線所成角的大小,是由空間任意一點分別引它們的平行線所成的銳角(或直角)來定義的.準確選定角的頂點,平移直線構造三角形是解題的重要環(huán)節(jié).本文舉例歸納幾種方法如下,供參考.一、抓異面直線上的已知點過一條異面直線上的已知點,引另一條直線的平行線(或作一直線并證明與另一直線平行),往往可以作為構造異面直線所成角的試探目標.例1(2005年全國高考福建
2025-03-25 06:43