freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學教學典型案例分析勾股定理1(編輯修改稿)

2025-05-13 22:24 本頁面
 

【文章內(nèi)容簡介】 圖①:2a=c+b. 圖②: a+b=c.”時,我知道,學生的思維快與嚴密的邏輯推理接軌了。我們是不是都有這樣的感受,課堂教學設計兼具“現(xiàn)實性”與“可能性”的特征,這意味著課堂教學設計方案與教學實施過程的展開之間不是“建筑圖紙”和“施工過程”的關系,即課堂教學過程不是簡單地執(zhí)行教學設計方案的過程。在課堂教學展開之初,我們可能先選取一個起點切入教學過程,但隨著教學的展開和師生之間、生生之間的多向互動,就會不斷形成多個基于不同學生發(fā)展狀態(tài)和教學推進過程的教學“新起點”。因此課堂教學設計的起點并不是唯一的,而是多元的;不是確定不變的,而是預設中生成的;不是按預設展開僵硬不變的,而是在動態(tài)中調(diào)整的。案例3:一位教師的習題課,內(nèi)容是“特殊四邊形”。該教師設計了如下習題:AOFEBHGC題1 (例題)順次連接四邊形各邊的中點,所得的四邊形是怎樣的四邊形?并證明你的結(jié)論。題2 如右圖所示,△ABC中,中線BE、CF交于O, G、H分別是BO、CO的中點。(1) 求證:FG∥EH。 (2) 求證:OF=CH.OFAECBD題3 (拓展練習)當原四邊形具有什么條件時,其中點四邊形為矩形、菱形、正方形?題4 (課外作業(yè))如右圖所示,DE是△ABC的中位線,AF是邊BC上的中線,DE、AF相交于點O.(1)求證:AF與DE互相平分;(2)當△ABC具有什么條件時,AF = DE。(3)當△ABC具有什么條件時,AF⊥DE。FGEHDCBA教師先讓學生思考第一題(例題)。教師引導學生畫圖、觀察后,進入證明教學。師:如圖,由條件E、F、G、H是各邊的中點,可聯(lián)想到三角形中位線定理,所以連接BD,可得EH、FG都平行且等于BD,所以EH平行且等于FG,所以四邊形EFGH是平行四邊形,下面,請同學們寫出證明過程。只經(jīng)過五六分鐘,證明過程的教學就“順利”完成了,學生也覺得不難。但讓學生做題2,只有幾個學生會做。題3對學生的困難更大,有的模仿例題,畫圖觀察,但卻得不到矩形等特殊的四邊形;有的先畫矩形,但矩形的頂點卻不是原四邊形各邊的中點。評課:本課習題的選擇設計比較好,涵蓋了三角形中位線定理及特殊四邊形的性質(zhì)與判定等數(shù)學知識。運用的主要方法有:(1)通過畫圖(實驗)、觀察、猜想、證明等活動,研究數(shù)學;(2)溝通條件與結(jié)論的聯(lián)系,實現(xiàn)轉(zhuǎn)化,添加輔助線;(3)由于習題具備了一定的開放性、解法的多樣性,因此思維也要具有一定的深廣度。為什么學生仍然不會解題呢?學生基礎較差是一個原因,在教學上有沒有原因?我個人感覺,主要存在這樣三個問題:(1)學生思維沒有形成。教師只講怎么做,沒有講為什么這么做。教師把證明思路都說了出來,沒有引導學生如何去分析,剝奪了學生思維空間;(2)缺少數(shù)學思想、方法的歸納,沒有揭示數(shù)學的本質(zhì)。出現(xiàn)講了這
點擊復制文檔內(nèi)容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1