【總結(jié)】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個間斷點定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
2024-11-03 21:17
【總結(jié)】曲面繪圖多元函數(shù)微分3多元微積分實驗多元函數(shù)積分常微分方程求解曲面繪圖曲面的一般方程是F(x,y,z)=0,在matlab中將曲面的點(x,y,z)的坐標先表示出來,再使用對應(yīng)的曲面繪圖函數(shù)。matlab常用的繪圖函數(shù)有:plot3,mesh,surf等。
2025-04-28 23:40
【總結(jié)】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點的二階導(dǎo)數(shù)在點的導(dǎo)數(shù)為在且稱點二階可導(dǎo)在則稱點可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結(jié)】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個分點:
2025-05-04 22:34
【總結(jié)】二、收斂數(shù)列的性質(zhì)一、數(shù)列極限的定義第一章函數(shù)與極限“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放——劉徽一、概念的引入R正六邊形的面積1A正十二邊形的面積2A????正邊形的面積126??nnA??,
2025-04-29 00:54
【總結(jié)】11、不定積分的概念與性質(zhì)2、換元積分法3、分部積分法4、有理函數(shù)的積分第五章不定積分2§不定積分的概念與性質(zhì)1、不定積分的概念2、不定積分的性質(zhì)3、基本積分表3一、概念41、原函數(shù)例如,cos)(sinxx??定義1若在
2024-08-14 07:00
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-07-31 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2024-07-31 11:10
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因為古歐洲人喜歡用石子來幫助計算,所以calculus被引申作計算的意思。?現(xiàn)時醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個中文詞,最早見諸清代數(shù)學(xué)家李善蘭和英國
2024-09-29 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀的微積分.很久很久以前,在很遠很遠的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2024-08-10 15:02
【總結(jié)】CHAPTER3THEDERIVATIVE微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2025-02-21 15:59
【總結(jié)】微積分導(dǎo)學(xué)——微積分的產(chǎn)生、應(yīng)用、特點,學(xué)習(xí)微積分的目的、意義和方法。1/20§1為什么要學(xué)習(xí)微積分微積分是高等學(xué)校中經(jīng)濟類、理工類專業(yè)學(xué)生必修的重要基礎(chǔ)理論課程。數(shù)學(xué)主要是研究現(xiàn)實世界中的數(shù)量關(guān)系與空間形式。在現(xiàn)實世界中,一切事物都在不斷地變化著,并遵循量變到質(zhì)變的規(guī)律。凡是研究量的大小、量
【總結(jié)】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復(fù)習(xí)嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關(guān)?學(xué)習(xí)內(nèi)容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復(fù)習(xí)備考1-網(wǎng)絡(luò)輔助
【總結(jié)】第二章極限與連續(xù)函數(shù)是現(xiàn)代數(shù)學(xué)的基本概念之一,是高等數(shù)學(xué)的主要研究對象.極限概念是微積分的理論基礎(chǔ),極限方法是微積分的基本分析方法,因此,掌握、運用好極限方法是學(xué)好微積分的關(guān)鍵.連續(xù)是函數(shù)的一個重要性態(tài).本章將介紹極限與連續(xù)的基本知識和有關(guān)的基本方法,為今后的學(xué)習(xí)打下必要的基礎(chǔ).二、數(shù)列
2025-04-29 01:42
【總結(jié)】微積分的創(chuàng)立是人類精神的最高勝利?!鞲袼埂蹲匀晦q證法》目錄微積分的主要內(nèi)容微積分發(fā)展史牛頓和萊布尼茨主要內(nèi)容微積分學(xué)是微分學(xué)(DifferentialCalculs)和積分學(xué)(IntegralCalculs)統(tǒng)稱,英文簡稱Calculs,意為計算。微分學(xué)
2024-12-29 12:26