freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)公式大全最新版資料(編輯修改稿)

2025-05-01 05:06 本頁面
 

【文章內(nèi)容簡介】 所表示的平面區(qū)域上下兩部分. 86. 圓的四種方程(1)圓的標(biāo)準(zhǔn)方程 .(2)圓的一般方程 (>0).(3)圓的參數(shù)方程 .(4)圓的直徑式方程 (圓的直徑的端點是、).87. 圓系方程(1)過點,的圓系方程是,其中是直線的方程,λ是待定的系數(shù).(2)過直線:與圓:的交點的圓系方程是,λ是待定的系數(shù).(3) 過圓:與圓:的交點的圓系方程是,λ是待定的系數(shù).點與圓的位置關(guān)系有三種若,則點在圓外。點在圓上。點在圓內(nèi).直線與圓的位置關(guān)系有三種:。.其中.設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2。.(1)已知圓.①若已知切點在圓上,則切線只有一條,其方程是 .當(dāng)圓外時, 表示過兩個切點的切點弦方程.②過圓外一點的切線方程可設(shè)為,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線.③斜率為k的切線方程可設(shè)為,再利用相切條件求b,必有兩條切線.(2)已知圓.①過圓上的點的切線方程為。②斜率為的圓的切線方程為.167。08. 圓錐曲線方程. ,.94.橢圓的的內(nèi)外部(1)點在橢圓的內(nèi)部.(2)點在橢圓的外部.95. 橢圓的切線方程 (1)橢圓上一點處的切線方程是. (2)過橢圓外一點所引兩條切線的切點弦方程是. (3)橢圓與直線相切的條件是.,.(1)點在雙曲線的內(nèi)部.(2)點在雙曲線的外部.(1)若雙曲線方程為漸近線方程:. (2)若漸近線方程為雙曲線可設(shè)為. (3)若雙曲線與有公共漸近線,可設(shè)為(,焦點在x軸上,焦點在y軸上).99. 雙曲線的切線方程 (1)雙曲線上一點處的切線方程是. (2)過雙曲線外一點所引兩條切線的切點弦方程是. (3)雙曲線與直線相切的條件是.100. 拋物線的焦半徑公式拋物線焦半徑.過焦點弦長. P,其中 .:(1)頂點坐標(biāo)為;(2)焦點的坐標(biāo)為;(3)準(zhǔn)線方程是.(1)點在拋物線的內(nèi)部.點在拋物線的外部.(2)點在拋物線的內(nèi)部.點在拋物線的外部.(3)點在拋物線的內(nèi)部.點在拋物線的外部.(4) 點在拋物線的內(nèi)部.點在拋物線的外部.104. 拋物線的切線方程(1)拋物線上一點處的切線方程是. (2)過拋物線外一點所引兩條切線的切點弦方程是. (3)拋物線與直線相切的條件是.(1)過曲線,的交點的曲線系方程是(為參數(shù)).(2)共焦點的有心圓錐曲線系方程,表示橢圓。 當(dāng)時,表示雙曲線. 或(弦端點A,由方程 消去y得到,,為直線的傾斜角,為直線的斜率). (1)曲線關(guān)于點成中心對稱的曲線是.(2)曲線關(guān)于直線成軸對稱的曲線是.108.“四線”一方程 對于一般的二次曲線,用代,用代,用代,用代,用代即得方程,曲線的切線,切點弦,中點弦,弦中點方程均是此方程得到.167。09. 立體幾何109.證明直線與直線的平行的思考途徑(1)轉(zhuǎn)化為判定共面二直線無交點;(2)轉(zhuǎn)化為二直線同與第三條直線平行;(3)轉(zhuǎn)化為線面平行;(4)轉(zhuǎn)化為線面垂直;(5)轉(zhuǎn)化為面面平行.110.證明直線與平面的平行的思考途徑(1)轉(zhuǎn)化為直線與平面無公共點;(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行.111.證明平面與平面平行的思考途徑(1)轉(zhuǎn)化為判定二平面無公共點;(2)轉(zhuǎn)化為線面平行;(3)轉(zhuǎn)化為線面垂直.112.證明直線與直線的垂直的思考途徑(1)轉(zhuǎn)化為相交垂直;(2)轉(zhuǎn)化為線面垂直;(3)轉(zhuǎn)化為線與另一線的射影垂直;(4)轉(zhuǎn)化為線與形成射影的斜線垂直.113.證明直線與平面垂直的思考途徑(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個平行平面;(5)轉(zhuǎn)化為該直線與兩個垂直平面的交線垂直.114.證明平面與平面的垂直的思考途徑(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直.(1)加法交換律:a+b=b+a.(2)加法結(jié)合律:(a+b)+c=a+(b+c).(3)數(shù)乘分配律:λ(a+b)=λa+λb.始點相同且不在同一個平面內(nèi)的三個向量之和,等于以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量.對空間任意兩個向量a、b(b≠0 ),a∥b存在實數(shù)λ使a=λb.三點共線.、共線且不共線且不共線. 向量p與兩個不共線的向量a、b共面的存在實數(shù)對,使.推論 空間一點P位于平面MAB內(nèi)的存在有序?qū)崝?shù)對,使,或?qū)臻g任一定點O,有序?qū)崝?shù)對,使.、B、C,滿足(),則當(dāng)時,對于空間任一點,總有P、A、B、C四點共面;當(dāng)時,若平面ABC,則P、A、B、C四點共面;若平面ABC,則P、A、B、C四點不共面.四點共面與、共面(平面ABC). 如果三個向量a、b、c不共面,那么對空間任一向量p,存在一個唯一的有序?qū)崝?shù)組x,y,z,使p=xa+yb+zc.推論 設(shè)O、A、B、C是不共面的四點,則對空間任一點P,都存在唯一的三個有序?qū)崝?shù)x,y,z,使.已知向量=a和軸,作B點在上的射影,則〈a,e〉=ae
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1