【總結】相似三角形與全等三角形的綜合復習友情提示:請根據(jù)課本相關內容,快速解決下列問題,8分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結】....相似三角形模型及應用相似證明中的基本模型A字形圖①字型,結論:,圖②反字型,結論:圖③雙字型,結論:,圖④內含正方形字形,結論(為正方形邊長)圖①圖②圖③
2025-06-28 20:59
【總結】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-03-24 07:41
【總結】專業(yè)資料分享金蘋果教育個性化教案:對應角相等,對應邊成比例的三角形,叫做相似三角形。:用符號“∽”表示,讀作“相似于”。:相似三角形的對應邊的比叫做相似比。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。:(1)三
2025-05-16 06:57
【總結】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動點(與C、D不重合).使得三角形的直角頂點與P點重合,并且一條直角邊始終經過點B,另一直角邊與正方形的某一邊所在直線交于點E.探究(1)觀察操作猜想哪一個三角形也△.(2)當點P位于CD的中點時,你得到的三角形與△BPC的周長比是多少?
2025-08-04 03:40
【總結】官方網(wǎng)站:相似三角形及其性質一、課堂講解知識點1、三角對應相等,三邊對應成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質,也是三角形相似的判定方法。注意
2025-04-17 07:51
【總結】......個性化輔導授課案教師:盧天明學生:時間2016年月日時段相似三角形的判定教學目
2025-04-17 07:43
【總結】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質:基本性質:ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【總結】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應點為C1.(1)當AC1⊥BC時,CD的長是多少?(2)設C
2025-03-25 06:32
【總結】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內容是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務教育課程標準實驗教科書北師大版八年級下冊第四章第5節(jié)內容。在此之前,學生已學習了線段的比,形狀相同的圖形及相似多邊形
2025-08-20 19:21
【總結】相似三角形復習(一)給你一個銳角三角形ABC和一條直線MN;問題你能用直線MN去截三角形ABC,使截得的三角形與原三角形相似嗎?相似三角形DE∥BC⊿ADE∽⊿ABCABAEACAD?∠DAE=∠CAB⊿ADE∽⊿ABC基本圖形判定方法∠AE
2024-11-24 13:48
【總結】......相似三角形綜合培優(yōu)題型基礎知識點梳理:知識點1有關相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應角相等,
2025-06-25 00:16
【總結】九、如下圖,△ABC中,AD∥BC,連結CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-03-25 06:31
【總結】九年級數(shù)學培優(yōu)講義1第1講相似三角形講義學習目標解三角形相似的判定方法學習重點:能夠運用三角形相似判定方法解決數(shù)學問題及實際問題.學習難點:運用三角形相似判定方法解決數(shù)學問題的思路學習過程一、證明三角形相似例1:已知,如圖,D為△ABC內一點連結ED、AD,以BC為邊在△ABC外作∠CBE=∠ABD,∠BC
2025-06-25 16:44
【總結】中考第一輪復習:相似三角形友情提示:請根據(jù)課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果。【我反思,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2024-11-30 11:56