【總結(jié)】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽(yáng)電大課程的性質(zhì)與任務(wù)《微積分初步》是計(jì)算機(jī)和數(shù)控專業(yè)的一門(mén)必修的重要基礎(chǔ)課程,通過(guò)本課程的學(xué)習(xí),使學(xué)生對(duì)一元函數(shù)微分、積分有初步認(rèn)識(shí)和了解,使學(xué)生初步掌握微積分的基本知識(shí)、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運(yùn)算能力和綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力
2025-01-19 21:35
【總結(jié)】第五節(jié)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束對(duì)坐標(biāo)的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問(wèn)題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-08 05:11
【總結(jié)】高等數(shù)學(xué),微積分大補(bǔ)考復(fù)習(xí)題1.填空題1、若,則。無(wú)窮小2、函數(shù)的定義域?yàn)?。x=23、有界函數(shù)與無(wú)窮小的乘積是。無(wú)窮小4、跳躍間斷點(diǎn)與可去間斷點(diǎn)統(tǒng)稱為:_______________。1類間斷點(diǎn)5、極限_______________。1/36、如果函數(shù)在區(qū)間上的導(dǎo)數(shù)恒為零,那么在區(qū)間上是
2025-08-05 18:34
【總結(jié)】第一篇:微積分B復(fù)習(xí)提綱(模版) 微積分B(Ⅰ)復(fù)習(xí)提綱 一、了解什么是基本初等函數(shù)?什么是初等函數(shù)?掌握初等函數(shù)求定義域及函數(shù)值、函數(shù)復(fù)合、函數(shù)表達(dá)式等; 二、了解極限的概念,掌握極限的求解方...
2024-11-09 04:58
【總結(jié)】一、六個(gè)基本積分二、待定系數(shù)法舉例三、小結(jié)第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個(gè)多項(xiàng)式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39
【總結(jié)】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2025-08-21 12:42
【總結(jié)】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2025-07-22 11:20
【總結(jié)】清華大學(xué)譚澤光的幾點(diǎn)建議學(xué)好《微積分》1912,04,102/24本講內(nèi)容一、了解微積分二、喜歡微積分三、掌握微積分3/24微積分的基本內(nèi)容研究函數(shù)的性質(zhì)與表示函數(shù)函數(shù)的表示函數(shù)的性質(zhì)
2024-10-18 13:43
【總結(jié)】11、不定積分的概念與性質(zhì)2、換元積分法3、分部積分法4、有理函數(shù)的積分第五章不定積分2§不定積分的概念與性質(zhì)1、不定積分的概念2、不定積分的性質(zhì)3、基本積分表3一、概念41、原函數(shù)例如,cos)(sinxx??定義1若在
2025-08-05 07:00
【總結(jié)】哈爾濱工程大學(xué)高等數(shù)學(xué)定義若函數(shù)),(yxf在),(000yxP的某個(gè)去心鄰域內(nèi)恒有),(),(00yxfyxf?,則稱),(00yxf為此函數(shù)的一個(gè)極大值,),(000yxP
2025-01-19 08:48
【總結(jié)】CHAPTER3THEDERIVATIVE微積分學(xué)的創(chuàng)始人:德國(guó)數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)思想最早由法國(guó)數(shù)學(xué)家Ferma在研究極值問(wèn)題中提出.英國(guó)數(shù)學(xué)家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2025-08-05 06:23
【總結(jié)】nyyyyn????21算術(shù)平均值公式只適用于有限個(gè)數(shù)值問(wèn)題:連續(xù)函數(shù)在區(qū)間上的平均值?)(xf],[ba第十節(jié)平均值一、函數(shù)的算術(shù)平均值把區(qū)間],[ba分成n等分,,1210bxxxxxann?????????每個(gè)小區(qū)間的長(zhǎng)度;nabx
2025-07-22 11:11
【總結(jié)】()dbafxx??定積分定義定積分的幾何意義:0lim??各部分面積的代數(shù)和可積的兩個(gè)充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(7條)§內(nèi)容回顧ix?()if?1ni??(大前提:函數(shù)有界)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aa
2025-01-20 05:32
【總結(jié)】§函數(shù)極限對(duì)于函數(shù)y=?(x),考察它的極限,考察自變量x在定義域內(nèi)變化時(shí),相應(yīng)的函數(shù)值的變化趨勢(shì)。;x???;x???;x??0;xx??0;xx??0;xx?種極限過(guò)程統(tǒng)一表示用記號(hào)6Xx?,下定義:如果在極限過(guò)程Xx?無(wú)限趨于)(xf,時(shí)當(dāng)則稱Xx?,)(
2025-01-20 05:31
【總結(jié)】微積分rxdtdx?微積分微積分第二章極限與連續(xù)?數(shù)列的極限?函數(shù)的極限?變量的極限?無(wú)窮大量與無(wú)窮小量?極限的運(yùn)算法則?兩個(gè)重要的極限?函數(shù)的連續(xù)性微積分函數(shù)極限微積分.sin時(shí)的變化趨勢(shì)當(dāng)觀察函數(shù)??xxx播放1.自變量
2024-10-19 18:07