【總結(jié)】:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù):兩個重要極限:三角函數(shù)公式:183。誘導公式:函數(shù)角Asincostgctg-α-sinαcosα-tgα-ctgα90176。-αcosαsinαct
2025-08-23 22:00
【總結(jié)】作業(yè)習題1、求下列函數(shù)的導數(shù)。(1);(2);(3);(4);(5);(6)。2、求下列隱函數(shù)的導數(shù)。(1);(2)已知求。3、求參數(shù)方程所確定函數(shù)的一階導數(shù)與二階導數(shù)。4、求下列函數(shù)的高階導數(shù)。(1)求;(2)求。5、求下列函數(shù)的微分。(1);(2)。6、求雙曲線,在點處的切線方程與法線方程。7、用定
2025-01-14 12:50
【總結(jié)】2導數(shù)與微分【目的要求】1、了解導數(shù)的概念,了解可導與連續(xù)的關(guān)系,了解導數(shù)的幾何意義及物理意義,記憶基本初等函數(shù)的導數(shù)公式;2、熟練運用導數(shù)的四則運算法則及復合函數(shù)法則計算導數(shù),會使用隱函數(shù)求導法及取對數(shù)求導法計算導數(shù),會計算二階導數(shù);3、了解微分的概念,掌握微分與導數(shù)的關(guān)系,會計算函數(shù)的微分,知道微分的應用;4、能在計算機上進行導數(shù)及微分的
2025-01-08 21:09
【總結(jié)】高數(shù)課件重慶大學數(shù)理學院教師吳新生第八章多元函數(shù)微分法及其應用開始退出第一節(jié)多元函數(shù)的基本概念返回第二節(jié)偏導數(shù)第四節(jié)多元復合函數(shù)的求導法則第五節(jié)隱函數(shù)的求導公式第六節(jié)微分法在幾何
2025-09-26 01:41
【總結(jié)】(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25.=26.=27.=2
2025-08-23 22:01
【總結(jié)】返回后頁前頁返回后頁前頁§5微積分學基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【總結(jié)】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構(gòu)成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【總結(jié)】高等數(shù)學練習題第二章導數(shù)與微分系專業(yè)班姓名學號第一節(jié)導數(shù)概念一.填空題,則=2.若存在,=.=.,則(米),則物體在秒時的瞬時速度為5(米
2025-04-04 05:19
【總結(jié)】2問題?xdx2cos,2sinCx??解決方法利用復合函數(shù),設(shè)置中間變量.過程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法3在一般情況下:設(shè)),()(ufuF??則.)()(???C
2025-09-25 20:47
【總結(jié)】高等數(shù)學課程相關(guān)?教材及相關(guān)輔導用書?《高等數(shù)學》第一版,肖筱南主編,林建華等編著,北京大學出版社.?《高等數(shù)學精品課程下冊》第一版,林建華等編著,廈門大學出版社,.《高等數(shù)學》第七版,同濟大學數(shù)學教研室主編,高等教育出版社,.《高等數(shù)學學習輔導與習題選解》(同濟第七版上下合訂
2025-08-05 18:40
【總結(jié)】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結(jié)束高階導數(shù)第二章一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-01-13 16:23
【總結(jié)】第五節(jié)高階導數(shù)思考題一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則
2025-01-08 13:41
【總結(jié)】《高等數(shù)學(微積分)》復習題A一、填空題1、函數(shù)的定義域是 2、設(shè),則_____________3、若y=x(x–1)(x–2)(x–3),則(0)= 4、函數(shù)的駐點是 5、若存在且連續(xù),則二、選擇題1、下列函數(shù)中,有界的是()。
2025-06-08 00:27
【總結(jié)】§高階導數(shù).),()(),()(它的可導性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導,則它的導函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點的二階導數(shù)在點的導數(shù)為在且稱點二階可導在則稱點可導在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結(jié)】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41