【總結(jié)】高等數(shù)學課程相關?教材及相關輔導用書?《高等數(shù)學》第一版,肖筱南主編,林建華等編著,北京大學出版社.?《高等數(shù)學精品課程下冊》第一版,林建華等編著,廈門大學出版社,.《高等數(shù)學》第七版,同濟大學數(shù)學教研室主編,高等教育出版社,.《高等數(shù)學學習輔導與習題選解》(同濟第七版上下合訂
2025-08-05 18:40
【總結(jié)】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結(jié)束高階導數(shù)第二章一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-01-13 16:23
【總結(jié)】第五節(jié)高階導數(shù)思考題一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則
2025-01-08 13:41
【總結(jié)】《高等數(shù)學(微積分)》復習題A一、填空題1、函數(shù)的定義域是 2、設,則_____________3、若y=x(x–1)(x–2)(x–3),則(0)= 4、函數(shù)的駐點是 5、若存在且連續(xù),則二、選擇題1、下列函數(shù)中,有界的是()。
2025-06-08 00:27
【總結(jié)】§高階導數(shù).),()(),()(它的可導性點的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導,則它的導函數(shù)在設xbaxfbaxfy??,)()(,)(,)(0000點的二階導數(shù)在點的導數(shù)為在且稱點二階可導在則稱點可導在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結(jié)】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關系五、小結(jié)思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41
【總結(jié)】一、高階導數(shù)的定義二、高階導數(shù)的求導法則三、小結(jié)思考題第三節(jié)高階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2025-08-21 12:37
【總結(jié)】一、無窮小:定義1如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)?(或正數(shù)X),使得對于適合不等式????00xx(或?xX)的一切x,對應的函數(shù)值)(xf都滿足不等式??)(xf,那末稱函數(shù))(xf當0xx?(或??x)時為無窮小,記作).0
2025-06-13 08:14
【總結(jié)】2在微分學中:1)(??????xx211)(arctanxx???反過來:x???11)(cx??)1ln(x5sec)(2??cx?5tan51復雜,怎樣求?問題:如果右端函數(shù)較?tan2x??)(如3例??xxcossin??sin是
2025-05-15 23:58
【總結(jié)】(1)學習輔導(三)第三章導數(shù)與微分導數(shù)與微分這一章是我們課程的學習重點之一。在學習的時候要側(cè)重以下幾點:⒈理解導數(shù)的概念;了解導數(shù)的幾何意義;會求曲線的切線和法線;會用定義計算簡單函數(shù)的導數(shù);知道可導與連續(xù)的關系。在點處可導是指極限存在,且該點處的導數(shù)就是這個極限的值。導數(shù)的定義式還可寫成極限函數(shù)在點處的導數(shù)的幾何意義是曲線上點處切線的斜率
2025-03-23 12:49
【總結(jié)】AP微積分之利用微分求導數(shù) AP微積分作為美國大學一年級的數(shù)學課,大部分高中都會都接觸微積分,并且我國高中的數(shù)學要求高于美國。所以小編建議學習AP微積分建議跟老師學習,因為它畢竟是一門課程?! ??AP微積分課程的三大基本功:求極限,求導數(shù),求積分?! ??在導數(shù)這一部分,高中階段普遍使用導數(shù)規(guī)則來求。但是當同學們學到多元微積分之后,更為有力的工具是全微分,因為它是一次施
2025-08-04 10:38
【總結(jié)】第四節(jié)高階導數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】定積分習題課一、主要內(nèi)容問題1:曲邊梯形的面積問題2:變速直線運動的路程定積分存在定理廣義積分定積分的性質(zhì)牛頓-萊布尼茨公式)()()(aFbFdxxfba???定積分的計算法二、內(nèi)容提要1定積分的
2025-01-08 13:49
【總結(jié)】一、不定積分的概念二、不定積分的性質(zhì)基本積分公式三、換元積分法四、分部積分法五、有理函數(shù)的積分不定積分一、不定積分的概念定義1若在某區(qū)間上,則稱為在該區(qū)間上的一個原函數(shù).)(xF)(xf)()(xfxF??上
2025-01-13 10:51
【總結(jié)】一、全微分二、全微分在近似計算中的應用三、小結(jié)思考題第三節(jié)全微分及其應用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2025-08-11 16:43