【總結(jié)】九年級數(shù)學(上)第四章:對圓的進一步認識-垂徑定理應用垂徑定理三種語言?定理垂直于弦的直徑平分弦,并且平分弦所的兩條弧.?老師提示:?垂徑定理是圓中一個重要的結(jié)論,三種語言要相互轉(zhuǎn)化,形成整體,才能運用自如.想一想6駛向勝利的彼岸●OABC
2025-11-01 04:52
【總結(jié)】垂徑定理—知識講解(提高)【學習目標】1.理解圓的對稱性;2.掌握垂徑定理及其推論;3.學會運用垂徑定理及其推論解決有關(guān)的計算、證明和作圖問題.【要點梳理】知識點一、垂徑定理 垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧. 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
2025-06-24 05:13
【總結(jié)】培優(yōu)輔導,陪你更優(yōu)秀!垂徑定理練習題典型例題分析:例題、垂徑定理1、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,如果油的最大深度為16cm,那么油面寬度AB是________cm.2、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,,如果油面寬度是48cm,那么油的最大深度為________cm.3、如圖,已知在⊙中,弦,且
2025-03-25 00:08
【總結(jié)】請觀察下列三個銀行標志有何共同點?圓的對稱性?圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的?圓的對稱性?圓是軸對稱圖形.圓的對稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對稱軸.●O可利用折疊的方法即可解決上述問題.注意:
2024-12-07 21:27
【總結(jié)】垂徑定理第1課時垂徑定理1.(4分)如圖,在⊙O中,OC⊥弦AB于點C,AB=4,OC=1,則OB的長是()A.3B.5C.15D.17B2.(4分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,
2024-12-07 13:07
【總結(jié)】垂徑定理問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙州橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?首頁情景引入由此你能得到圓的什么特性?可以發(fā)現(xiàn):圓是軸對稱圖形。任何一條直徑所在直線都是它的對稱軸.問題1:不借助任何工具,你能
2024-11-19 02:33
【總結(jié)】圓的垂徑定理習題?1.如圖1,⊙O的直徑為10,圓心O到弦AB的距離OM的長為3,那么弦AB的長是(????)?A.4???????B.6????????C.7
2025-06-22 15:49
【總結(jié)】......垂直于弦的直徑課題垂直于弦的直徑(第一課時)備課時間2015-11-25課型新授課授課教師劉春芳教學目標知識與技能1.研究圓的對稱性,掌握垂
2025-04-16 22:37
【總結(jié)】河北黃驊新世紀中學初三數(shù)學組王老師制作.問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?·OABCD
2024-11-27 23:31
【總結(jié)】對稱性制作人:王云松.OAB圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?18
2025-10-28 19:11
【總結(jié)】第三章圓第3節(jié)垂徑定理問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代勞動人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為m,拱高(弧的中點到弦的距離)為m,你能求出趙州橋主橋拱的半徑嗎?趙州橋的半徑是多少?③AM=BM,垂徑定理?
2024-12-08 11:41
【總結(jié)】垂徑定理1.如圖1,⊙O的直徑為10,圓心O到弦AB的距離OM的長為3,那么弦AB的長是()A.4B.6C.7D.82.如圖,⊙O的半徑為5,弦AB的長為8,M是弦AB上的一個動點,則線段OM長的最小值為( ?。〢.2B.3C.4D.53.過⊙O內(nèi)一點M的最長弦為10
【總結(jié)】2013中考全國100份試卷分類匯編圓的垂徑定理1、(2013年濰坊市)如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP:AP=1:5,則CD的長為().A.B.C.D.2、(2013年黃石)如右圖,在中,,,,以點為圓心,為半徑的圓與交于點,則的長為()
2025-06-22 23:13
【總結(jié)】創(chuàng)設情境,引入新課復習提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
【總結(jié)】第三章圓垂徑定理廣東省佛山華英學校羅建輝?等腰三角形是軸對稱圖形嗎??如果將一等腰三角形沿底邊上的高對折,可以發(fā)現(xiàn)什么結(jié)論??如果以這個等腰三角形的頂角頂點為圓心,腰長為半徑畫圓,得到的圖形是否是軸對稱圖形呢?類比引入③AM=BM,●OABCDM└①CD是直徑
2024-11-17 00:01