【總結(jié)】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^(guò)程中往往會(huì)遇到各種各樣的題型而覺(jué)得無(wú)從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問(wèn)題,淺談利用基本不等式求最值的各類(lèi)題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2025-07-23 12:30
【總結(jié)】經(jīng)典例題透析類(lèi)型一:利用柯西不等式求最值 1.求函數(shù)的最大值. 思路點(diǎn)撥:利用不等式解決最值問(wèn)題,通常設(shè)法在不等式一邊得到一個(gè)常數(shù),并尋找不等式取等號(hào)的條件.這個(gè)函數(shù)的解析式是兩部分的和,若能化為ac+bd的形式就能利用柯西不等式求其最大值.也可以利用導(dǎo)數(shù)求解?! 〗馕觯骸 》ㄒ唬骸咔遥 嗪瘮?shù)的定義域?yàn)?,且, ?dāng)且僅當(dāng)時(shí),等號(hào)
2025-03-25 04:42
【總結(jié)】均值不等式總結(jié)及應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則 (2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則
2025-06-17 15:53
【總結(jié)】不等式與不等式組測(cè)試姓名__________學(xué)號(hào)____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2024-11-11 04:58
【總結(jié)】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【總結(jié)】不等式和不等式組錢(qián)旭東淮安市啟明外國(guó)語(yǔ)學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)九年級(jí)復(fù)習(xí)課回顧·知識(shí)一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識(shí):含
2024-10-12 13:38
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】不等式應(yīng)用題1、某藥制品車(chē)間現(xiàn)有A種藥劑70克,、,,可獲利45元;,,,用這批藥劑合成兩種型號(hào)的藥品所獲的總利潤(rùn)為y元(1)求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量x的取值范圍.(2)藥制品車(chē)間合成這批藥品,配制N型藥品多少套時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?2、某工廠要招聘A,B倆個(gè)工種的工人150人,A,B倆個(gè)工種的工人的月工資分別為1500元
2025-03-24 06:13
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語(yǔ):一切的方法都要落實(shí)到動(dòng)手實(shí)踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點(diǎn) 要求:(?。?,難度為中低檔題,.考點(diǎn)梳理 a+:3;...
2024-10-27 10:26
【總結(jié)】精品資源均值不等式應(yīng)用(二)教學(xué)目的:要求學(xué)生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問(wèn)題。教學(xué)重點(diǎn): 均值不等式應(yīng)用教學(xué)過(guò)程:一、復(fù)習(xí):基本不等式、極值定理二、例題:1.求函數(shù)的最大值,下列解法是否正確?為什么?解一:∴解二:當(dāng)即時(shí)答:以上兩種解法均有錯(cuò)誤。解一錯(cuò)在取不到“=”,即不存在使得;解二錯(cuò)在不是定值
2025-06-24 04:36
【總結(jié)】武勝中學(xué)高2009級(jí)培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號(hào)當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時(shí)取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【總結(jié)】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】不等式的應(yīng)用高三備課組一、內(nèi)容歸納1知識(shí)精講:在前面幾節(jié)課學(xué)習(xí)的不等式的性質(zhì)、證明和解不等式的基礎(chǔ)上運(yùn)用不等式的的知識(shí)和思想方法分析、解決一些涉及不等式關(guān)系的問(wèn)題.2重點(diǎn)難點(diǎn):善于將一個(gè)表面上看來(lái)并非是不等式的問(wèn)題借助不等式的有關(guān)部門(mén)知識(shí)來(lái)解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-09 08:50
【總結(jié)】§不等式的實(shí)際應(yīng)用哪一種更合算呢請(qǐng)問(wèn)選擇移動(dòng)還是聯(lián)通?若老王每月本地電話(huà)通話(huà)時(shí)間約為120分鐘,長(zhǎng)途電話(huà)60分鐘,請(qǐng)幫他選擇一種最合算的手機(jī)卡老王購(gòu)買(mǎi)了一部手機(jī),預(yù)使用中國(guó)移動(dòng)“神州行”卡或加入聯(lián)通的130網(wǎng),經(jīng)調(diào)查其收費(fèi)標(biāo)準(zhǔn)見(jiàn)下表:網(wǎng)絡(luò)月租費(fèi)本地話(huà)費(fèi)長(zhǎng)途話(huà)費(fèi)聯(lián)
2024-09-29 19:11
【總結(jié)】第八講不等式與不等式組一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( )A.a(chǎn)0B.aC.a&l
2025-04-16 12:51