【總結(jié)】2020年12月19日星期六用空間向量解決立體幾何問(wèn)題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【總結(jié)】ZPZ空間“角度”問(wèn)題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2025-08-05 10:54
【總結(jié)】一、復(fù)習(xí)用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問(wèn)題)(進(jìn)行向量運(yùn)算)(
2024-11-09 03:30
【總結(jié)】立體幾何中探索性問(wèn)題的向量解法近幾年的高考對(duì)新課程增加的新內(nèi)容的考查形式和要求已經(jīng)發(fā)生重大變化,向量、導(dǎo)數(shù)等內(nèi)容已經(jīng)由解決問(wèn)題的輔助地位上升為分析問(wèn)題和解決問(wèn)題時(shí)必不可少的工具,成為綜合運(yùn)用數(shù)學(xué)知識(shí)、多角度展開(kāi)解題思路的重要命題素材。高考試卷中立體幾何試題不斷出現(xiàn)了一批具有探究性、開(kāi)放性的試題,對(duì)這些試題的研究不難發(fā)現(xiàn),如果靈活的運(yùn)用平面向量和空間向量知識(shí)來(lái)探求這類問(wèn)題,將是更好的形與數(shù)的結(jié)
2024-10-04 15:35
【總結(jié)】相似矩陣的性質(zhì)及應(yīng)用畢業(yè)論文定義:設(shè)A、B為數(shù)域P上兩個(gè)n級(jí)矩陣,如果可以找到數(shù)域P上的n級(jí)可逆矩陣X,使得B=AX,就說(shuō)A相似于B,記做.性質(zhì)1數(shù)域P上的n階方陣的相似關(guān)系是一個(gè)等價(jià)關(guān)系.證明:1〉(反身性)由于單位矩陣E是可逆矩陣,且A=AE,故任何方陣A與A相似.2〉(對(duì)稱性)設(shè)A與B相似,即存在數(shù)域P上的可逆方陣C,使得B=AC,由此可得A=CB=B,顯
2025-06-23 04:14
【總結(jié)】浙江海洋學(xué)院本科畢業(yè)論文淺談“循環(huán)矩陣”的性質(zhì)及應(yīng)用畢業(yè)論文目錄摘要 IAbstract II1前言 12.循環(huán)矩陣的基本概念及性質(zhì) 3基本概念 3循環(huán)矩陣的性質(zhì) 3 73循環(huán)矩陣的推廣 10廣義循環(huán)矩陣 10循環(huán)矩陣 14反循環(huán)矩陣 17小結(jié) 21參考文獻(xiàn) 22致謝
2025-06-20 01:51
【總結(jié)】反對(duì)稱矩陣的性質(zhì)及應(yīng)用畢業(yè)論文目錄中文摘要: 1英文摘要 1 22.反對(duì)稱矩陣的基本性質(zhì) 2 2 3 6 8 8 9 10反對(duì)稱矩陣特征值的性質(zhì)及證明 10 10 11 11參考文獻(xiàn) 12反對(duì)稱矩陣的性
2025-06-24 14:50
【總結(jié)】支持向量機(jī)算法研究及應(yīng)用畢業(yè)論文目錄 4課題背景 4國(guó)內(nèi)外研究綜述 4本課題研究的意義和目的 5 5 5Hilbert空間上的凸規(guī)劃 5 5 5線性支持向量分類機(jī) 5 5硬-帶超平面 5線性硬-帶支持向量回歸機(jī) 5 5 5 5 5 5 5 5 5 5參考文獻(xiàn) 5致謝辭 5
2025-06-26 20:05
【總結(jié)】?jī)缌憔仃嚨男再|(zhì)及應(yīng)用嘉應(yīng)學(xué)院本科畢業(yè)論文(設(shè)計(jì))(2015屆)題目:冪零矩陣的性質(zhì)及應(yīng)用姓名:李丹學(xué)號(hào):113010022
2025-06-20 06:07
【總結(jié)】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【總結(jié)】借助向量解立體幾何問(wèn)題知識(shí)要點(diǎn)(其中為向量的夾角)。一、求點(diǎn)到平面的距離定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做點(diǎn)到平面的距離。即過(guò)這個(gè)點(diǎn)到平面垂線段的長(zhǎng)度。一般方法:利用定義先做出過(guò)這個(gè)點(diǎn)到平面的垂線段,再計(jì)算這個(gè)垂線段的長(zhǎng)度。PBA向量法:PA
2024-11-07 01:07
【總結(jié)】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2024-09-05 17:12
【總結(jié)】立體構(gòu)成元素在婚紗設(shè)計(jì)中的運(yùn)用畢業(yè)論文目錄一、立體構(gòu)成元素在婚紗設(shè)計(jì)中的運(yùn)用 1二、立體構(gòu)成在作品“XXXXXX”中運(yùn)用方法 3(一)婚紗立體造型的重點(diǎn)部位 3 3 4 4(二)婚紗立體造型手法應(yīng)用 5 5 5 6 7 7總結(jié) 7致謝 9參考文獻(xiàn) 11一、立體構(gòu)成元素在婚紗設(shè)計(jì)中的運(yùn)用
2025-06-24 23:45
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17
【總結(jié)】利用空間向量解立體幾何問(wèn)題2、例2已知三角形的頂點(diǎn)是,,,試求這個(gè)三角形的面積。分析:可用公式來(lái)求面積解:∵,,∴,,,∴,∴所以,.1、綜述(1)由于任意兩個(gè)空間向量都可以轉(zhuǎn)化為平面向量,所以空間兩個(gè)向量的夾角的定義和取值范圍、兩個(gè)向量垂直的定義和符號(hào)、兩個(gè)空間向量的數(shù)量積等等,都與平面向量相同。(2)利用空間向量解題的方法有2類:(i)利
2025-06-07 16:39