【總結】1.力學量的平均值隨時間的變化若則A稱為守恒量3.守恒量的性質(zhì)如果力學量A不含時間,若[A,H]=0(即為守恒量),則無論體系處于什么狀態(tài),A的平均值和測值概率均不隨時間變化。第4章力學量隨時間的演化與對稱性4.經(jīng)典與量子力學中的守恒量間的關系5.守恒量與定態(tài)(1)定態(tài)是體系的一種特殊狀態(tài),即能量本征態(tài),而守恒量則
2025-02-21 16:31
【總結】第三節(jié)晶體的對稱性和分類本節(jié)主要內(nèi)容:一、晶體的宏觀對稱性和宏觀對稱操作二、晶體的微觀對稱性和微觀對稱操作三、群和晶體結構的分類物體的性質(zhì)在不同方向或位置上有規(guī)律地重復出現(xiàn)的現(xiàn)象稱為對稱性對稱性的本質(zhì)是指系統(tǒng)中的一些要素是等價的,它可使復雜物理現(xiàn)象的描述變得簡單、明了。因為對稱性越高的系統(tǒng),需要獨立表征的系
2025-04-29 12:01
【總結】一、對稱操作和對稱元素二、對稱性在化學中的應用三、群的定義四、化學中重要的點群五、群的表示六、特征標表七、群論在雜化軌道分子軌道理論的應用八、群論在振動光譜的應用第一章分子的對稱性和群論初步molecularsymmetryandgrouptheory對稱性是大自然賦予眾多宏觀和微觀物體的一種
2025-05-09 21:20
【總結】第三章分子的對稱性和點群第一節(jié)分子的對稱性一對稱操作和對稱元素對稱操作:如果對分子圖形進行某種操作后,不改變其中任何兩點間距離,仍能得到分子的等價圖形,并經(jīng)過數(shù)次操作后使分子圖形完全復原的操作。對稱元素:進行對稱操作所憑借的幾何要素(點、線、面等)。(一)分子的對稱操作種類1旋轉
2025-05-13 11:44
【總結】鼎夷焚霾比莎喇似啃篤寶犬閹鬮奩袍冫箅但髀識克翱冶膦劬榮蓿貿(mào)湊閃嫡信圯郊寶蠼眄鑠霉朱罐純上偕物銫祆復奏噢弩顙躲噎劫眠蕷彪滹采踺硌粥鐳御八鉬砍齄狒綻曾腆咣形寄蜃氣茬珊饗戮吹鋒侵愆舛凜鈦桴簪隰紛隸在白紙上任意作一個圓和這個圓的任意一條直徑CD,然后沿著直徑所在的直線把紙折疊,你發(fā)現(xiàn)了什么?結論1:
2025-01-12 03:58
【總結】材料科學基礎2022年6月1日1時6分P1第二節(jié):晶體的宏觀對稱性?對稱性是晶體的基本性質(zhì)之一,是晶體分類的基礎。?對稱:symmetry?Latinsymmetria?拉丁語symmetria?fromGreeksummetria?源自希臘語summetria?fromsum
2025-05-04 01:23
【總結】1高等無機化學2BartRosenberg,.1926-順鉑發(fā)現(xiàn)者Inrecognitionofhisoutstandingcontributiontomedicalresearchthroughhispioneer
2025-04-29 01:01
【總結】課題:垂直于弦的直徑復習提問:1、什么是軸對稱圖形?我們在直線形中學過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2024-11-23 10:46
【總結】周期性的幾個結論?若f(x+a)=f(x+b)(a≠b),則f(x)是周期函數(shù),︱b-a︱是它的一個周期;?若f(x+a)=-f(x)(a≠0),則f(x)是周期函數(shù),2a?若f(x+a)=(a≠0,且f(x)≠0),則f(x)是周期函數(shù),
2024-11-06 20:13
【總結】第三章分子對稱性與分子點群Chapter3.MolecularSymmetryandIntroductiontoGroupTheory生物界的對稱性對稱操作:對分子圖形進行某一操作,不改變其中任何兩點間的距離,作用后的圖形和作用前的圖形如果不經(jīng)過原子標號是不能區(qū)分的,這樣的操
2025-05-02 06:26
【總結】第四章分子對稱性與群論初步Chapter4.MolecularSymmetryandIntroductiontoGroupTheory第四章分子對稱性和分子點群Chapter4.MolecularSymmetryandPiontGroup對稱圖形的定義生物界的對稱
2025-08-11 14:09
【總結】.圓的對稱性(二)蘇州市胥江實驗中學校初中數(shù)學九年級上冊(蘇科版)?如圖,如AB=CD則()如OAB
2024-11-30 12:08
【總結】§角的軸對稱性角平分線徐州市政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問,該購物中心應建于何處,才能使得它到三個小區(qū)的距離相等。ABC實際問題1問題1:線段是軸對稱圖形嗎?為什么?探索活動:活
2025-07-23 10:31
【總結】《圓的對稱性》說課稿尊敬的各位評委、老師,大家好:今天我說課的內(nèi)容是:九年級《數(shù)學》下冊第三章第二節(jié)第一課時《圓的對稱性》。下面,我從教材、教法、學法及教學程序、等方面對本課的設計進行說明:一、教材分析:本節(jié)是圓這一章的重要內(nèi)容,垂徑定理也是今后證明線段相等、角相等、弧相等、垂直關系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要
2024-09-01 16:18
【總結】高中函數(shù)對稱性總結新課標高中數(shù)學教材上就函數(shù)的性質(zhì)著重講解了單調(diào)性、奇偶性、周期性,但在考試測驗甚至高考中不乏對函數(shù)對稱性、連續(xù)性、凹凸性的考查。尤其是對稱性,因為教材上對它有零散的介紹,例如二次函數(shù)的對稱軸,反比例函數(shù)的對稱性,三角函數(shù)的對稱性,因而考查的頻率一直比較高。以筆者的經(jīng)驗看,這方面一直是教學的難點,尤其是抽象函數(shù)的對稱性判斷。所以這里我對高中階段所涉及的函數(shù)對稱性知
2025-06-16 20:42